Estimating insulin sensitivity and ��-cell function from the oral glucose tolerance test: validation of a new insulin sensitivity and secretion (ISS) model.

Joon Ha, Stephanie T Chung, Max Springer, Joon Young Kim, Phil Chen, Aaryan Chhabra, Melanie G Cree, Cecilia Diniz Behn, Anne E Sumner, Silva A Arslanian, Arthur S Sherman
Author Information
  1. Joon Ha: Department of Mathematics, Howard University, Washington, District of Columbia, United States.
  2. Stephanie T Chung: Section on Pediatric Diabetes, Obesity, and Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States.
  3. Max Springer: Department of Mathematics, University of Maryland, College Park, Maryland, United States. ORCID
  4. Joon Young Kim: Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, New York, United States.
  5. Phil Chen: Irvine, California, United States.
  6. Aaryan Chhabra: Department of Biology, Indian Institute of Science Education and Research, Pune, India.
  7. Melanie G Cree: Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States.
  8. Cecilia Diniz Behn: Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States. ORCID
  9. Anne E Sumner: Intramural Research Program, National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health, Bethesda, Maryland, United States.
  10. Silva A Arslanian: Division of Pediatric Endocrinology, Metabolism and Diabetes Mellitus, Center for Pediatric Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States.
  11. Arthur S Sherman: Laboratory of Biological Modeling, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States. ORCID

Abstract

Efficient and accurate methods to estimate insulin sensitivity () and ��-cell function (BCF) are of great importance for studying the pathogenesis and treatment effectiveness of type 2 diabetes (T2D). Existing methods range in sensitivity, input data, and technical requirements. Oral glucose tolerance tests (OGTTs) are preferred because they are simpler and more physiological than intravenous methods. However, current analytical methods for OGTT-derived and BCF also range in complexity; the oral minimal models require mathematical expertise for deconvolution and fitting differential equations, and simple algebraic surrogate indices (e.g., Matsuda index, insulinogenic index) may produce unphysiological values. We developed a new insulin secretion and sensitivity (ISS) model for clinical research that provides precise and accurate estimates of SI and BCF from a standard OGTT, focusing on effectiveness, ease of implementation, and pragmatism. This model was developed by fitting a pair of differential equations to glucose and insulin without need of deconvolution or C-peptide data. This model is derived from a published model for longitudinal simulation of T2D progression that represents glucose-insulin homeostasis, including postchallenge suppression of hepatic glucose production and first- and second-phase insulin secretion. The ISS model was evaluated in three diverse cohorts across the lifespan. The new model had a strong correlation with gold-standard estimates from intravenous glucose tolerance tests and insulin clamps. The ISS model has broad applicability among diverse populations because it balances performance, fidelity, and complexity to provide a reliable phenotype of T2D risk. The pathogenesis of type 2 diabetes (T2D) is determined by a balance between insulin sensitivity () and ��-cell function (BCF), which can be determined by gold standard direct measurements or estimated by fitting differential equation models to oral glucose tolerance tests (OGTTs). We propose and validate a new differential equation model that is simpler to use than current models and requires less data while maintaining good correlation and agreement with gold standards. Matlab and Python code is freely available.

Keywords

References

  1. Pediatr Diabetes. 2020 Nov;21(7):1159-1168 [PMID: 32592269]
  2. Metabolism. 2020 Nov;112:154346 [PMID: 32835760]
  3. IEEE Trans Biomed Eng. 2002 May;49(5):419-29 [PMID: 12002173]
  4. Diabetes Care. 2018 Aug;41(8):1696-1706 [PMID: 29941497]
  5. Endocr Connect. 2018 Mar;7(3):403-412 [PMID: 29436386]
  6. Am J Physiol. 1979 Jun;236(6):E667-77 [PMID: 443421]
  7. Diabetes. 2005 Aug;54(8):2404-14 [PMID: 16046308]
  8. Diabetes. 2016 Oct;65(10):3200-11 [PMID: 27416945]
  9. Pediatr Diabetes. 2018 Oct;19 Suppl 27:105-114 [PMID: 30058221]
  10. Diabetes Care. 2009 Jan;32(1):100-5 [PMID: 18835946]
  11. Diabetes. 2000 Dec;49(12):2094-101 [PMID: 11118012]
  12. J Pediatr. 2012 Jul;161(1):51-7 [PMID: 22325254]
  13. Biophys J. 2008 Sep;95(5):2226-41 [PMID: 18515381]
  14. Diabetes. 2004 May;53(5):1201-7 [PMID: 15111487]
  15. Diabetes Care. 2012 Dec;35(12):2559-63 [PMID: 22912428]
  16. Diabetes. 2001 Jan;50(1):150-8 [PMID: 11147781]
  17. Diabetes Care. 2000 Mar;23(3):295-301 [PMID: 10868854]
  18. J Theor Biol. 2000 Oct 21;206(4):605-19 [PMID: 11013117]
  19. Diabetes. 2014 Apr;63(4):1203-13 [PMID: 24651807]
  20. Circ Res. 2020 Jan 3;126(1):94-108 [PMID: 31623522]
  21. Am J Physiol Endocrinol Metab. 2020 Aug 1;319(2):E410-E426 [PMID: 32663101]
  22. Obesity (Silver Spring). 2016 Nov;24(11):2399-2406 [PMID: 27804265]
  23. Endocrinology. 2016 Feb;157(2):624-35 [PMID: 26709417]
  24. Diabetologia. 2021 Oct;64(10):2345-2347 [PMID: 34324020]
  25. J Clin Endocrinol Metab. 2011 Jul;96(7):2136-45 [PMID: 21508130]
  26. Diabetes Technol Ther. 2003;5(6):1003-15 [PMID: 14709204]
  27. Lancet Diabetes Endocrinol. 2016 Jan;4(1):27-34 [PMID: 26577716]
  28. Am J Physiol Regul Integr Comp Physiol. 2019 Jul 1;317(1):R134-R142 [PMID: 31042400]
  29. J Clin Endocrinol Metab. 2008 Nov;93(11):4231-7 [PMID: 18713820]
  30. Diabetes Care. 2011 Sep;34(9):2033-40 [PMID: 21750275]
  31. Diabetes Care. 2019 Feb;42(2):265-272 [PMID: 30455334]
  32. J Clin Endocrinol Metab. 2019 Jan 1;104(1):181-192 [PMID: 30260396]
  33. Am J Epidemiol. 2000 Jan 15;151(2):190-8 [PMID: 10645822]
  34. Diabetes Care. 1999 Sep;22(9):1462-70 [PMID: 10480510]
  35. Diabetes Care. 2016 Aug;39(8):1431-9 [PMID: 27293201]
  36. BMJ Open Diabetes Res Care. 2021 Sep;9(1): [PMID: 34531244]
  37. Diabet Med. 1994 Apr;11(3):286-92 [PMID: 8033528]
  38. Metabol Open. 2021 Jan 07;9:100078 [PMID: 33511337]
  39. Diabetes Metab J. 2019 Feb;43(1):49-58 [PMID: 30398039]
  40. Clin Endocrinol (Oxf). 2017 Nov;87(5):484-491 [PMID: 28681942]
  41. Am J Physiol Endocrinol Metab. 2005 Dec;289(6):E954-9 [PMID: 16014353]
  42. J Clin Invest. 1972 Aug;51(8):2047-59 [PMID: 4559946]
  43. Diabetes Care. 2016 Sep;39(9):1602-13 [PMID: 27407117]
  44. Diabetes Care. 2001 Mar;24(3):539-48 [PMID: 11289482]
  45. Diabetologia. 2021 Oct;64(10):2138-2146 [PMID: 34296322]
  46. J Clin Endocrinol Metab. 2000 Nov;85(11):4396-402 [PMID: 11095485]
  47. Diabetes Res Clin Pract. 2020 Dec;170:108523 [PMID: 33153960]
  48. Diabetologia. 1985 Jul;28(7):412-9 [PMID: 3899825]
  49. J Diabetes Complications. 2013 Mar-Apr;27(2):158-61 [PMID: 23140910]
  50. Diabetes. 1978 Jul;27(7):715-25 [PMID: 658617]
  51. Diabetologia. 1993 Sep;36(9):857-62 [PMID: 8405758]
  52. Front Physiol. 2021 Apr 22;12:601894 [PMID: 33967818]

Grants

  1. 2022H1D3A2A01063552/National Research Foundation of Korea (NRF)
  2. NIH ZIA DK013027/HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  3. NSF DMS 1853511/National Science Foundation (NSF)
  4. NSF DGE 1840340/National Science Foundation (NSF)
  5. NIH ZIA DK075105/HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  6. ZIA DK075105/Intramural NIH HHS
  7. NIH R01DK120612/HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  8. R01 DK120612/NIDDK NIH HHS
  9. NIH R01 HD27503/HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
  10. ZIA DK013027/Intramural NIH HHS
  11. R01 HD027503/NICHD NIH HHS

MeSH Term

Humans
Glucose Tolerance Test
Insulin Resistance
Insulin Secretion
Diabetes Mellitus, Type 2
Blood Glucose
Insulin
Glucose
Glucose Clamp Technique

Chemicals

Blood Glucose
Insulin
Glucose

Word Cloud

Created with Highcharts 10.0.0insulinmodelsensitivityglucosetolerancemethodsfunctionBCFT2DdifferentialnewISS��-celldatatestsintravenousoralmodelsfittingsecretionaccuratepathogenesiseffectivenesstype2diabetesrangeOGTTssimplercurrentcomplexitydeconvolutionequationsindexdevelopedestimatesstandarddiversecorrelationdeterminedgoldequationclampEfficientestimategreatimportancestudyingtreatmentExistinginputtechnicalrequirementsOralpreferredphysiologicalHoweveranalyticalOGTT-derivedalsominimalrequiremathematicalexpertisesimplealgebraicsurrogateindicesegMatsudainsulinogenicmayproduceunphysiologicalvaluesclinicalresearchprovidespreciseSIOGTTfocusingeaseimplementationpragmatismpairwithoutneedC-peptidederivedpublishedlongitudinalsimulationprogressionrepresentsglucose-insulinhomeostasisincludingpostchallengesuppressionhepaticproductionfirst-second-phaseevaluatedthreecohortsacrosslifespanstronggold-standardclampsbroadapplicabilityamongpopulationsbalancesperformancefidelityprovidereliablephenotyperiskbalancecandirectmeasurementsestimatedproposevalidateuserequireslessmaintaininggoodagreementstandardsMatlabPythoncodefreelyavailableEstimatingtest:validationbeta-cellhyperglycemichyperinsulinemiceuglycemictest

Similar Articles

Cited By