A systematic comparison between FEBio and PolyFEM for biomechanical systems.

Liam Martin, Pranav Jain, Zachary Ferguson, Torkan Gholamalizadeh, Faezeh Moshfeghifar, Kenny Erleben, Daniele Panozzo, Steven Abramowitch, Teseo Schneider
Author Information
  1. Liam Martin: University of Pittsburgh Swanson School of Engineering, USA.
  2. Pranav Jain: New York University, USA.
  3. Zachary Ferguson: New York University, USA.
  4. Torkan Gholamalizadeh: 3Shape A/S, Denmark.
  5. Faezeh Moshfeghifar: University of Copenhagen, Denmark.
  6. Kenny Erleben: University of Copenhagen, Denmark.
  7. Daniele Panozzo: New York University, USA.
  8. Steven Abramowitch: University of Pittsburgh Swanson School of Engineering, USA.
  9. Teseo Schneider: University of Victoria, Canada. Electronic address: teseo@uvic.ca.

Abstract

BACKGROUND AND OBJECTIVES: Finite element simulations are widely employed as a non-invasive and cost-effective approach for predicting outcomes in biomechanical simulations. However, traditional finite element software, primarily designed for engineering materials, often encountered limitations in contact detection and enforcement, leading to simulation failure when dealing with complex biomechanical configurations. Currently, a lot of model tuning is required to get physically accurate finite element simulations without failures. This adds significant human interaction to each iteration of a biomechanical model. This study addressed these issues by introducing PolyFEM, a novel finite element solver that guarantees inversion- and intersection-free solutions with completely automatic collision detection. The objective of this research is to validate PolyFEM's capabilities by comparing its results with those obtained from a well-established finite element solver, FEBio.
METHODS: To achieve this goal, five comparison scenarios were formulated to assess and validate PolyFEM's performance. The simulations were reproduced using both PolyFEM and FEBio, and the final results were compared. The five comparison scenarios included: (1) reproducing simulations from the FEBio test suite, consisting of static, dynamic, and contact-driven simulations; (2) replicating simulations from the verification paper published alongside the original release of FEBio; (3) a biomechanically based contact problem; (4) creating a custom simulation involving high-energy collisions between soft materials to highlight the difference in collision methods between the two solvers; and (5) performing biomechanical simulations of biting and quasi-stance.
RESULTS: We found that PolyFEM was capable of replicating all simulations previously conducted in FEBio. Particularly noteworthy is PolyFEM's superiority in high-energy contact simulations, where FEBio fell short, unable to complete over half of the simulations in Scenario 4. Although some of the simulations required significantly more simulation time in PolyFEM compared to FEBio, it is important to highlight that PolyFEM achieved these results without the need for any additional model tuning or contact declaration.
DISCUSSION: Despite being in the early stages of development, PolyFEM currently provides verified solutions for hyperelastic materials that are consistent with FEBio, both in previously published workflows and novel finite element scenarios. PolyFEM exhibited the ability to tackle challenging biomechanical problems where other solvers fell short, thus offering the potential to enhance the accuracy and realism of future finite element analyses.

Keywords

References

  1. Sci Rep. 2021 Jun 21;11(1):12968 [PMID: 34155224]
  2. Comput Methods Biomech Biomed Engin. 2010 Oct;13(5):589-603 [PMID: 20521186]
  3. Stapp Car Crash J. 2008 Nov;52:1-31 [PMID: 19085156]
  4. J Mech Behav Biomed Mater. 2021 Jan;113:104136 [PMID: 33053499]
  5. Arthroscopy. 2015 Dec;31(12):2380-91.e2 [PMID: 26343943]
  6. Proc Inst Mech Eng H. 2013 Sep;227(9):1009-19 [PMID: 23804955]
  7. Int Urogynecol J. 2022 Mar;33(3):551-561 [PMID: 33787951]
  8. J Biomech. 2015 Jun 25;48(9):1580-6 [PMID: 25757664]
  9. Stapp Car Crash J. 2018 Nov;62:293-318 [PMID: 30608998]
  10. J Orthop Surg Res. 2019 Jul 25;14(1):237 [PMID: 31345248]
  11. Sci Rep. 2020 Jun 23;10(1):10156 [PMID: 32576935]
  12. Comput Methods Appl Mech Eng. 2018 Mar 1;330:522-546 [PMID: 29736092]
  13. World Neurosurg. 2020 Sep;141:e204-e212 [PMID: 32502627]
  14. Comput Methods Programs Biomed. 2020 Apr;187:105258 [PMID: 31830699]
  15. Comput Methods Biomech Biomed Engin. 2006 Aug;9(4):257-70 [PMID: 17132532]
  16. Comput Methods Programs Biomed. 2022 Nov;226:107140 [PMID: 36162245]
  17. Comput Methods Biomech Biomed Engin. 2018 May;21(6):444-452 [PMID: 30010415]
  18. Orthop Surg. 2022 Aug;14(8):1836-1845 [PMID: 35768396]
  19. Proc Inst Mech Eng H. 2011 Sep;225(9):857-65 [PMID: 22070023]
  20. Comput Methods Programs Biomed. 2020 Sep;193:105491 [PMID: 32388067]
  21. J Biomech Eng. 2012 Aug;134(8):084503 [PMID: 22938363]
  22. Materials (Basel). 2019 Jan 15;12(2): [PMID: 30650644]
  23. Soft Robot. 2023 Apr;10(2):410-430 [PMID: 36476150]
  24. Front Bioeng Biotechnol. 2021 Feb 10;8:622552 [PMID: 33644008]
  25. Proc Inst Mech Eng H. 2010;224(7):801-12 [PMID: 20839648]
  26. Comput Methods Programs Biomed. 2022 Sep;224:107009 [PMID: 35872385]
  27. Stapp Car Crash J. 2003 Oct;47:107-33 [PMID: 17096247]
  28. Heliyon. 2019 Jun 12;5(6):e01767 [PMID: 31245635]
  29. Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84 [PMID: 17558646]
  30. Biomech Model Mechanobiol. 2021 Apr;20(2):389-401 [PMID: 33221991]
  31. Am J Orthod Dentofacial Orthop. 2011 Jan;139(1):e59-71 [PMID: 21195258]
  32. J Biomech Eng. 2012 Jan;134(1):011005 [PMID: 22482660]
  33. Appl Numer Math. 2009 Aug;59(8):1970-1988 [PMID: 20161462]
  34. J Biomech. 2012 Feb 23;45(4):625-33 [PMID: 22236526]
  35. Clin Oral Investig. 2023 Jan;27(1):115-124 [PMID: 35989373]
  36. Interface Focus. 2019 Aug 6;9(4):20190011 [PMID: 31263532]
  37. Med Eng Phys. 2021 Jun;92:25-32 [PMID: 34167708]
  38. Int J Implant Dent. 2022 Feb 11;8(1):8 [PMID: 35147791]
  39. Orthop Surg. 2019 Apr;11(2):195-203 [PMID: 30895703]
  40. J Biomech Eng. 2018 Aug 1;140(8): [PMID: 30003262]
  41. J Prosthet Dent. 2001 Jun;85(6):585-98 [PMID: 11404759]
  42. J Orthop Res. 2008 Jul;26(7):951-6 [PMID: 18271010]
  43. J Transl Med. 2020 Sep 29;18(1):369 [PMID: 32993675]
  44. PLoS Comput Biol. 2018 Jul 26;14(7):e1006223 [PMID: 30048444]
  45. J Biomech Eng. 2011 Nov;133(11):111001 [PMID: 22168733]

Grants

  1. R01 DK133328/NIDDK NIH HHS
  2. R01 HD083383/NICHD NIH HHS
  3. R01 HD097187/NICHD NIH HHS

MeSH Term

Humans
Software
Computer Simulation
Biomechanical Phenomena
Finite Element Analysis

Word Cloud

Created with Highcharts 10.0.0simulationselementFEBioPolyFEMbiomechanicalfinitecontactFinitematerialssimulationmodelPolyFEM'sresultscomparisonscenariosdetectiontuningrequiredwithoutnovelsolversolutionscollisionvalidatefivecomparedreplicatingverificationpublished4high-energyhighlightsolverspreviouslyfellshortBACKGROUNDANDOBJECTIVES:widelyemployednon-invasivecost-effectiveapproachpredictingoutcomesHowevertraditionalsoftwareprimarilydesignedengineeringoftenencounteredlimitationsenforcementleadingfailuredealingcomplexconfigurationsCurrentlylotgetphysicallyaccuratefailuresaddssignificanthumaninteractioniterationstudyaddressedissuesintroducingguaranteesinversion-intersection-freecompletelyautomaticobjectiveresearchcapabilitiescomparingobtainedwell-establishedMETHODS:achievegoalformulatedassessperformancereproducedusingfinalincluded:1reproducingtestsuiteconsistingstaticdynamiccontact-driven2paperalongsideoriginalrelease3biomechanicallybasedproblemcreatingcustominvolvingcollisionssoftdifferencemethodstwo5performingbitingquasi-stanceRESULTS:foundcapableconductedParticularlynoteworthysuperiorityunablecompletehalfScenarioAlthoughsignificantlytimeimportantachievedneedadditionaldeclarationDISCUSSION:DespiteearlystagesdevelopmentcurrentlyprovidesverifiedhyperelasticconsistentworkflowsexhibitedabilitytacklechallengingproblemsthusofferingpotentialenhanceaccuracyrealismfutureanalysessystematicsystemsBenchmarkContactanalysisLargedeformation

Similar Articles

Cited By