The mobilization step in a two-step capillary isoelectric focusing protocol is discussed by means of dynamic computer simulation data for systems without and with spacer compounds that establish their zones at the beginning and end of the focusing column. After focusing in an electroosmosis-free environment (first step), mobilization (second step) can be induced electrophoretically, by the application of a hydrodynamic flow, or by a combination of both means. Dynamic simulations provide insight into the complexity of the various modes of electrophoretic mobilization and dispersion associated with hydrodynamic mobilization. The data are discussed together with the relevant literature.
Hjertén S. Isoelectric focusing in capillaries. In: Grossman PD, Colburn JC, editors. Capillary electrophoresis, theory and practice. San Diego: Academic Press; 1992. p. 191–214.
Pritchett TJ. Capillary isoelectric focusing of proteins. Electrophoresis. 1996;17:1195–1201.
Righetti PG, Gelfi C, Conti M. Current trends in capillary isoelectric focusing of proteins. J Chromatogr B. 1997;699:91–104.
Shimura K. Recent advances in capillary isoelectric focusing: 1997–2001. Electrophoresis. 2002;23:3847–3857.
Kilár F. Recent applications of capillary isoelectric focusing. Electrophoresis. 2003;24:3908–3916.
Wehr T. Capillary isoelectric focusing. In: Garfin D, Ahuja S, editors. Handbook of isoelectric focusing and proteomics. Amsterdam: Elsevier; 2005. p. 181–210.
Wu J, Huang T, Pawliszyn J. Isoelectric focusing in capillary systems. In: Landers JP, editor. Handbook of capillary and microchip electrophoresis and associated techniques. Boca Raton, FL: CRC Press; 2008. p. 563–579.
Shimura K. Recent advances in IEF in capillary tubes and microchips. Electrophoresis. 2009;30:11–28.
Sommer GJ, Hatch AV. IEF in microfluidic devices. Electrophoresis. 2009;30;742–757.
Šalplachta J, Kubersová A, Horká M. Latest improvements in CIEF: from proteins to microorganisms. Proteomics. 2012;12:2927–2936.
Hühner J, Lämmerhofer M, Neusüß C. Capillary isoelectric focusing‐mass spectrometry: coupling strategies and applications. Electrophoresis. 2015;36:2670–2686.
Fang X, Tragas C, Wu J, Mao Q, Pawliszyn J. Recent developments in capillary isoelectric focusing with whole‐column imaging detection. Electrophoresis. 1998;19:2290–2295.
Mao Q, Pawliszyn J. Capillary isoelectric focusing with whole column imaging detection for analysis of proteins and peptides. J Biochem Biophys Methods. 1999;39:93–110.
Vlčková M, Kalman F, Schwarz MA. Pharmaceutical applications of isoelectric focusing on microchip with imaged UV detection. J Chromatogr A. 2008;1181:145–152.
Wu J, McElroy W, Pawliszyn J, Heger CD. Imaged capillary isoelectric focusing: applications in the pharmaceutical industry and recent innovations of the technology. Trends Anal Chem. 2022;150:116567.
Wang TS, Hartwick RA. Whole column absorbance detection in capillary isoelectric focusing. Anal Chem. 1992;64:1745–1747.
Raisi F, Belgrader P, Borkholder DA, Herr AE, Kintz GJ, Pourhamadi F, et al. Microchip isoelectric focusing using a miniature scanning detection system. Electrophoresis. 2001;22:2291–2295.
Shimura K, Kamiya K‐I, Matsumoto H, Kasai K. Fluorescence‐labeled peptide pI markers for capillary isoelectric focusing. Anal Chem. 2002;74:1046–1053.
Takahashi K, Maruo Y, Kitamori, T, Shimura K. A capillary holder for scanning detection of capillary isoelectric focusing with laser‐induced fluorescence. J Sep Sci. 2009;32:394–398.
Thormann W, Egen NB, Mosher RA, Bier M. Characterization of synthetic carrier ampholytes by repetitive scanning of the electric field during focusing, J Biochem Biophys Methods. 1985;11:287–293.
Thormann W, Mosher RA, Bier M. Experimental and theoretical dynamics of isoelectric focusing: elucidation of a general separation mechanism. J Chromatogr. 1986;351:17–29.
Thormann W, Tsai A, Michaud JP, Mosher RA, Bier M. Capillary isoelectric focusing: effects of capillary geometry, voltage gradient and addition of linear polymer. J Chromatogr. 1987;389:75–86.
Mosher RA, Thormann W, Bier M. Experimental and theoretical dynamics of isoelectric focusing ii. Elucidation of the impact of the electrode assembly. J Chromatogr. 1988;436:191–204.
Hjertén S, Zhu M. Adaptation of the equipment for high‐performance electrophoresis to isoelectric focusing. J Chromatogr. 1985;346:265–270.
Hjertén S, Liao J, Yao K. Theoretical and experimental study of high‐performance electrophoretic mobilization of isoelectrically focused protein zones. J Chromatogr. 1987;387:127–138.
Zhu M, Rodriguez R, Wehr T. Optimizing separation parameters in capillary isoelectric focusing. J Chromatogr. 1991;559:479–488.
Manabe T, Miyamoto H, Iwasaki A. Effects of catholytes on the mobilization of proteins after capillary isoelectric focusing. Electrophoresis. 1997;18:92–97.
Mack S, Cruzado‐Park I, Chapman J, Ratnayake C, Vigh G. A systematic study in CIEF: defining and optimizing experimental parameters critical to method reproducibility and robustness. Electrophoresis. 2009;30:4049–4058.
Bonn R, Rampai S, Rae T, Fishpaugh J. CIEF method optimization: development of robust and reproducible protein reagent characterization in the clinical immunodiagnostic industry. Electrophoresis. 2013;32:825–832.
Tentori AM, Herr AE. Performance implications of chemical mobilization after microchannel IEF. Electrophoresis. 2014;35:1453–1460.
Jenkins MA, Ratnaike S. Capillary isoelectric focusing of haemoglobin variants in the clinical laboratory. Clin Chim Acta. 1999;289:121–132.
Lopez‐Soto‐Yarritu P, Díez‐Masa JC, Cifuentes A, de Frutos M. Improved capillary isoelectric focusing method for recombinant erythropoietin analysis. J Chromatogr A. 2002;968:221–228.
Lacunza I, Díez‐Masa JC, de Frutos M. CIEF with hydrodynamic and chemical mobilization for the separation of forms of alpha‐1‐acid glycoprotein. Electrophoresis. 2007;28:1204–1213.
Huang T‐L, Shieh PCH, Cooke N. Isoelectric focusing of proteins in capillary electrophoresis with pressure‐driven mobilization. Chromatographia. 1994;39:543–548.
Minárik M, Groiss F, Gaš B, Blaas D, Kenndler E. Dispersion effects accompanying pressurized zone mobilization in capillary isoelectric focusing of proteins. J Chromatogr A. 1996;738:123–128.
Tang Q, Lee CS. Effects of electroosmotic flow on zone mobilization in capillary isoelectric focusing. J Chromatogr A. 1997;781:113–118.
Shen Y, Xiang F, Veenstra TD, Fung EN, Smith RD. High‐resolution capillary isoelectric focusing of complex protein mixtures from lysates of microorganisms. Anal Chem. 1999;71:5348–5353.
Mazzeo JR, Krull IS. Capillary isoelectric focusing of proteins in uncoated fused silica capillaries using polymeric additives. Anal Chem. 1991;63:2852–2857.
Thormann W, Caslavska J, Molteni S, Chmelíkk J. Capillary isoelectric focusing with electroosmotic zone displacement and on‐column multiwavelength detection. J Chromatogr. 1992;589:321–327.
Caslavska J, Molteni S, Chmelík J, Šlais K, Matulík F, Thormann W. Behaviour of substituted aminomethylphenol dyes in capillary isoelectric focusing with electroosmotic zone displacement. J Chromatogr A. 1994;680:549–559.
Molteni S, Frischknecht H, Thormann W. Application of dynamic capillary isoelectric‐focusing to the analysis of human hemoglobin‐variants. Electrophoresis. 1994;15:22–30.
Moorhouse KG, Eusebio CA, Hunt G, Chen AB. Rapid one‐step capillary isoelectric focusing method to monitor charged glycoforms of recombinant human tissue‐type plasminogen activator. J Chromatogr A. 1995;717:61–69.
Kilár F, Végvári Á, Mód A. New set‐up for capillary isoelectric focusing in uncoated capillaries. J Chromatogr A. 1998;813:349–360.
Hofmann O, Che D, Cruickshank KA, Müller UR. Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal Chem. 1999;71:678–686.
Páger C, Dörnyei Á, Kilár F. Sequential injection setup for capillary isoelectric focusing combined with MS detection. Electrophoresis. 2011;32:1875–1884.
Steinmann L, Mosher RA, Thormann W. Characterization and impact of the temporal behavior of the electroosmotic flow in capillary isoelectric focusing with electroosmotic zone displacement. J Chromatogr A. 1996;756:219–232.
Thormann W, Zhang C‐X, Caslavska J, Gebauer P, Mosher RA. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems. Anal Chem. 1998;70:549–562.
Thormann W, Caslavska J, Mosher RA. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing. J Chromatogr A. 2007;1155:154–163.
Thormann W, Breadmore MC, Caslavska J, Mosher RA. Dynamic computer simulations of electrophoresis: a versatile research and teaching tool. Electrophoresis. 2010;31:726–754.
Thormann W, Mosher RA. Instabilities of the pH gradient in carrier ampholyte‐based isoelectric focusing: elucidation of the contributing electrokinetic processes by computer simulation. Electrophoresis. 2021;42:814–833.
Mao Q, Pawliszyn J, Thormann W. Dynamics of capillary isoelectric focusing in absence of fluid flow: high‐resolution computer simulation and experimental validation with whole column optical imaging. Anal Chem. 2000;72:5493–5502.
Mosher RA, Thormann W. High‐resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: the post‐separation stabilizing phase revisited. Electrophoresis. 2002;23:1803–1814.
Thormann W, Huang T, Pawliszyn J, Mosher RA. High‐resolution computer simulation of the dynamics of isoelectric focusing of proteins. Electrophoresis. 2004;25:324–337.
Mosher RA, Thormann W. High‐resolution computer simulation of the dynamics of isoelectric focusing: in quest of more realistic input parameters for carrier ampholytes. Electrophoresis. 2008;29:1036–1047.
Takácsi‐Nagy A, Kilár F, Páger C, Mosher RA, Thormann W. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization by high‐resolution dynamic computer simulation. Electrophoresis. 2012;33:970–980.
Takácsi‐Nagy A, Kilár F, Thormann W. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes. Electrophoresis. 2017;38:677–688.
Thormann W, Mosher RA. High‐resolution computer simulation of electrophoretic mobilization in isoelectric focusing. Electrophoresis. 2008;29:1676–1686.
Thormann W, Mosher RA. High‐resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: focusing with concurrent electrophoretic mobilization is an isotachophoretic process. Electrophoresis. 2006;27:968–983.
Takácsi‐Nagy A, Kilár F, Thormann W. The effect of pH adjusted electrolytes on capillary isoelectric focusing assessed by high‐resolution dynamic computer simulation. Electrophoresis. 2022;43:669–678.
Hruška V, Jaroš M, Gaš B. Simul 5 – free dynamic simulator of electrophoresis. Electrophoresis. 2006;27:984–991.
Gaš B, Bravenec P. Simul 6: a fast dynamic simulator of electromigration. Electrophoresis. 2021;42:1291–1299.
Thormann W. Electrophoretic mobilization in capillary isoelectric focusing by a weak acid or an acidic ampholyte as catholyte assessed by computer simulation. Electrophoresis. 2023;44:656–666.
Mosher RA, Thormann W. Experimental and theoretical dynamics of isoelectric focusing: IV. Cathodic, anodic and symmetrical drifts of the pH gradient. Electrophoresis. 1990;11:717–723.
Vigh G, Gaš B. Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment. Electrophoresis. 2023;44:675–688.
Vigh G, Gaš B. Evolution of the theoretical description of the isoelectric focusing experiment: III. Carrier ampholyte behavior in transient, bidirectional isotachophoresis. Electrophoresis. 2023;44:689–700.
Ansorge M, Gaš B, Boublík M, Malý M, Šteflová J, Hruška V, et al. CE determination of the thermodynamic pKa values and limiting ionic mobilities of 14 low molecular mass UV absorbing ampholytes for accurate characterization of the pH gradient in carrier ampholytes‐based IEF and its numeric simulation. Electrophoresis. 2020;41:514–522.
Kristl T, Stutz H. Comparison of different mobilization strategies for capillary isoelectric focusing of ovalbumin variants. J Sep Sci. 2015;38:148–156.
Duša F, Moravcová D, Šlais K. Low‐molecular‐mass nitrophenol‐based compounds suitable for the effective tracking of pH gradient in isoelectric focusing. Anal Chim Acta. 2019;1076:144–153.
Wang L, Bo T, Zhang Z, Wang G, Tong W, Chen DDY. High resolution capillary isoelectric focusing mass spectrometry analysis of peptides, proteins, and monoclonal antibodies with a flow‐through microvial interface. Anal Chem. 2018;90:9495–9503.
Mack S, Arnold D, Bogdan G, Bousse L, Danan L, Dolnik V, et al. A novel microchip‐based imaged CIEF‐MS system for comprehensive characterization and identification of biopharmaceutical charge variants. Electrophoresis. 2019;40:3084–3091.
North RY, Vigh G. Determination of the operational pH value of a buffering membrane by an isoelectric trapping separation of a carrier ampholyte mixture. Electrophoresis. 2008;29:1077–1081.
Firestone M, Thormann W. Capillary isoelectric focusing using an LKB 2127 Tachophor isotachophoretic analyzer. J Chromatogr. 1988;436:309–315.
Guo Y‐J, Bishop R. Extension of the alkaline end of a pH gradient in thin‐layer polyacrylamide electrofocusing by addition of N,N,Nˊ,Nˊ‐tetramethylethylenediamine. J Chromatogr. 1982;232:459–462.
Zhu M, Rodriguez R, Wehr T, Siebert C. Capillary electrophoresis of hemoglobins and globin chains. J Chromatogr. 1992;608:225–237.
Schwer C. Capillary Isoelectric focusing: a routine method for protein analysis. Electrophoresis. 1995;16:2121–2126.
Rodriguez‐Diaz R, Zhu M, Wehr T. Strategies to improve performance of capillary isoelectric focusing. J Chromatogr A. 1997;772:145–160.
Conti M, Gelfi C, Bianchi Bosisio A, Righetti PG. Quantitation of glycated hemoglobins in human adult blood by capillary isoelectric focusing. Electrophoresis. 1996;17:1590–1596.
Jager AV, Tavares MFM. Novel approach for the analysis of glycated hemoglobin using capillary isoelectric focusing with chemical mobilization. J Chromatogr B. 2003;785:285–292.
Kilár F, Hjertén S. Fast and high resolution analysis of human serum transferrin by high performance isoelectric focusing in capillaries. Electrophoresis. 1989;10:23–29.
Chau MK, Arega NG, Nhung Tran NA, Song J, Lee S, Kim J, et al. Capacitively coupled contactless conductivity detection for microfluidic capillary isoelectric focusing. Anal Chim Acta. 2020;1124:60–70.
Hempe JM, Craver RD. Quantification of hemoglobin variants by capillary isoelectric focusing. Clin Chem. 1994;40:2288–2295.
Hempe JM, Granger JN, Craver RD. Capillary isoelectric focusing of hemoglobin variants in the pediatric clinical laboratory. Electrophoresis. 1997;18:1785–1795.
Hempe JM, Craver RD. Separation of hemoglobin variants with similar charge by capillary isoelectric focusing: value of isoelectric point for identification of common and uncommon hemoglobin variants. Electrophoresis. 2000;21:743–748.
Taylor G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc London Ser A. 1953;219:186–203.
Aris R. On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc London Ser A. 1956;235:67–77.
Caslavska J, Mosher RA, Thormann W. Impact of Taylor–Aris diffusivity on analyte and system zone dispersion in CZE assessed by computer simulation and experimental validation. Electrophoresis. 2015;36:1529–1538.
Ivory CF. Taylor dispersion in equilibrium gradient focusing at steady state. Electrophoresis. 2015;36:662–667.
Jensen PK, Paša‐Tolić L, Anderson GA, Horner JA, Lipton MS, Bruce JE, et al. Probing proteomes using capillary isoelectric focusing‐electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 1999;71:2076–2084.
Veenstra TD, Martinović S, Anderson GA, Paša‐Tolić L, Smith RD. Proteome analysis using selective incorporation of isotopically labeled amino acids. J Am Soc Mass Spectrom. 2000;11:78–82.
Zhang C‐X, Xiang F, Paša‐Tolić L, Anderson GA, Veenstra TD, Smith RD. Stepwise mobilization of focused proteins in capillary isoelectric focusing mass spectrometry. Anal Chem. 2000;72:1462–1468.
Chartogne A, Gaspari M, Jespersen S, Buscher B, Verheij E, van der Heijden R, et al. On‐target fraction collection for the off‐line coupling of capillary isoelectric focusing with matrix‐assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2002;16:201–207.
Chartogne A, Reeuwijk B, Hofte B, van der Heijden R, Tjaden U, van der Greef J. Capillary electrophoretic separations of proteins using carrier ampholytes. J Chromatogr A. 2002;959:289–298.
Xu T, Han L, Sun L. Automated capillary isoelectric focusing‐mass spectrometry with ultrahigh resolution for characterizing microheterogeneity and isoelectric points of intact protein complexes. Anal Chem. 2022;94:9674–9682.
Xu T, Han L, George Thompson AM, Sun L. An improved capillary isoelectric focusing–mass spectrometry method for high‐resolution characterization of monoclonal antibody charge variants. Anal Methods. 2022;14:383–393.
Zhu G, Sun L, Dovici NJ. Simplified capillary isoelectric focusing with chemical mobilization for intact protein analysis. J Sep Sci. 2017:40:948–953.