Detection of non-ribosomal and polyketide biosynthetic genes in bacteria from green mud crab gut microbiome and their antagonistic activities.

Shabreen Banu, Shivakiran Alva, Prathiksha J Prabhu, Sreedharan Krishnan, Madhu K Mani
Author Information
  1. Shabreen Banu: Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangalore, Karnataka 575018, India.
  2. Shivakiran Alva: Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangalore, Karnataka 575018, India.
  3. Prathiksha J Prabhu: Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangalore, Karnataka 575018, India.
  4. Sreedharan Krishnan: ICAR-Central Institute of Fisheries Education, Lahli, Via Anwal, Rohtak, Haryana 124411, India.
  5. Madhu K Mani: Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangalore, Karnataka 575018, India.

Abstract

Multi-modular enzyme complexes known as non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs) have been widely reported in bacteria that produce secondary bioactive metabolites such as non-ribosomal peptides (NRPs) and polyketides (PKs), respectively. These NRPS/PKS pathways contribute to synthesizing several antibiotics, such as vancomycin, rifamycin, and bleomycin, which are vital in human medicine. The present study aimed to isolate gut-associated bacteria from mud crab , and detect NRPS and PKS gene clusters associated with it. This study included 36 bacterial isolates from five mud crab gut samples. Biosynthetic gene clusters (NRPS and PKS), were detected by PCR using degenerative primers specific to these genes. Three isolates (FKP2-4, FKP4-1, and FKP2-16) were positive for NRPS and two for PKS (FKP2-4 and FKP4-1) genes. The isolates were subjected to 16S rRNA gene amplification and sequenced. In silico analysis of the sequences using the Basic Local Alignment Search Tool (BLAST) identified the isolates FKP2-4, FKP4-1, and FKP2-16 as and , respectively, after comparing with the existing sequences available in the National Center for Biotechnology Information (NCBI) database. Compared to the control, it was observed that these isolates exhibited intriguing antagonistic activities against and . However, these isolates failed to show significant activity against . Exopolysaccharide production by the isolated organisms was tested using Zobell marine agar (ZMA) with 5% sucrose, but none of the colonies were mucoid or slimy.

Keywords

References

  1. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  2. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  3. Fish Shellfish Immunol. 2012 Apr;32(4):503-12 [PMID: 22200639]
  4. Dev Comp Immunol. 2019 Sep;98:54-64 [PMID: 30986432]
  5. PLoS One. 2015 Sep 23;10(9):e0138327 [PMID: 26398766]
  6. Biotechnol Adv. 2013 Dec;31(8):1826-45 [PMID: 23500952]
  7. Biotechnol Lett. 2012 Aug;34(8):1393-403 [PMID: 22481301]
  8. AMB Express. 2018 Dec 13;8(1):192 [PMID: 30547243]
  9. Curr Opin Biotechnol. 2004 Jun;15(3):199-204 [PMID: 15193327]
  10. Lett Appl Microbiol. 2007 Aug;45(2):219-23 [PMID: 17651222]
  11. Nat Prod Rep. 2012 Dec;29(12):1407-23 [PMID: 23037777]
  12. Fish Shellfish Immunol. 2021 Jan;108:142-146 [PMID: 33271318]
  13. Mar Drugs. 2011;9(6):1119-1132 [PMID: 21747750]
  14. Angew Chem Int Ed Engl. 1998 Sep 4;37(16):2162-2178 [PMID: 29711453]
  15. J Antibiot (Tokyo). 1966 Sep;19(5):200-9 [PMID: 5953301]
  16. BMC Genomics. 2022 Aug 25;23(1):618 [PMID: 36008774]
  17. Environ Toxicol Pharmacol. 2021 Oct;87:103722 [PMID: 34391907]
  18. Sci Rep. 2022 May 17;12(1):8155 [PMID: 35581239]
  19. Arch Microbiol. 2021 Apr;203(3):1251-1258 [PMID: 33128575]
  20. Nat Rev Microbiol. 2005 Dec;3(12):937-47 [PMID: 16322742]
  21. Mar Drugs. 2010 Jun 03;8(6):1779-802 [PMID: 20631870]
  22. Appl Environ Microbiol. 2012 May;78(10):3744-52 [PMID: 22427492]
  23. Infect Drug Resist. 2018 Oct 10;11:1645-1658 [PMID: 30349322]
  24. Appl Environ Microbiol. 1997 Aug;63(8):3233-41 [PMID: 9251210]
  25. Int J Syst Evol Microbiol. 2015 Mar;65(Pt 3):857-863 [PMID: 25510976]
  26. Mar Drugs. 2014 Nov 14;12(11):5425-40 [PMID: 25405856]
  27. Microbiologyopen. 2021 Mar;10(2):e1179 [PMID: 33970543]
  28. Annu Rev Microbiol. 1994;48:559-84 [PMID: 7826019]
  29. Microb Ecol. 2005 Jan;49(1):10-24 [PMID: 15614464]
  30. Molecules. 2023 Jan 20;28(3): [PMID: 36770725]
  31. J Water Health. 2022 Jan;20(1):176-184 [PMID: 35100165]
  32. Nat Rev Drug Discov. 2009 Jan;8(1):69-85 [PMID: 19096380]
  33. Front Pharmacol. 2016 Oct 25;7:333 [PMID: 27826240]
  34. Saudi J Biol Sci. 2018 Dec;25(8):1743-1754 [PMID: 30591795]
  35. Microb Biotechnol. 2019 Sep;12(5):828-844 [PMID: 30834674]
  36. Front Microbiol. 2018 Feb 27;9:295 [PMID: 29535686]
  37. J Basic Microbiol. 2014 Aug;54(8):843-50 [PMID: 23828308]
  38. Trends Biotechnol. 2011 Aug;29(8):388-98 [PMID: 21561675]

Word Cloud

Created with Highcharts 10.0.0isolatesbacteriacrabgenesnon-ribosomalmudNRPSPKSgeneusingFKP2-4FKP4-1synthetasespolyketiderespectivelystudyclustersgutBiosyntheticPCRFKP2-16sequencesantagonisticactivitiesactivityMulti-modularenzymecomplexesknownpeptideNRPSsPKSswidelyreportedproducesecondarybioactivemetabolitespeptidesNRPspolyketidesPKsNRPS/PKSpathwayscontributesynthesizingseveralantibioticsvancomycinrifamycinbleomycinvitalhumanmedicinepresentaimedisolategut-associateddetectassociatedincluded36bacterialfivesamplesdetecteddegenerativeprimersspecificThreepositivetwosubjected16SrRNAamplificationsequencedsilicoanalysisBasicLocalAlignmentSearchToolBLASTidentifiedcomparingexistingavailableNationalCenterBiotechnologyInformationNCBIdatabaseComparedcontrolobservedexhibitedintriguingHoweverfailedshowsignificantExopolysaccharideproductionisolatedorganismstestedZobellmarineagarZMA5%sucrosenonecoloniesmucoidslimyDetectionbiosyntheticgreenmicrobiomeAntimicrobialGutMud

Similar Articles

Cited By

No available data.