Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes.

Chase Christenson, Chengyue Wu, David A Hormuth, Shiliang Huang, Ande Bao, Andrew Brenner, Thomas E Yankeelov
Author Information
  1. Chase Christenson: Departments of Biomedical Engineering, USA.
  2. Chengyue Wu: Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
  3. David A Hormuth: Livestrong Cancer Institutes, USA.
  4. Shiliang Huang: Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA.
  5. Ande Bao: Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
  6. Andrew Brenner: Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA.
  7. Thomas E Yankeelov: Departments of Biomedical Engineering, USA.

Abstract

Rhenium-186 (Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models.
Methods: We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters.
Results: Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively.
Conclusion: We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment.
Statement of Significance: This manuscript explores the application of computational models to predict response to radionuclide therapy in glioblastoma. There are few, to our knowledge, examples of mathematical models used in clinical radionuclide therapy. We have tested a family of models to determine the applicability of different radiation coupling terms for response to the localized radiation delivery. We show that with patient-specific parameter estimation, we can make accurate predictions of future glioblastoma response to the treatment. As a comparison, we have shown that population trends in response can be used to forecast growth from the moment the treatment has been delivered.In addition to the high simulation and prediction accuracy our modeling methods have achieved, the evaluation of a family of models has given insight into the response dynamics of radionuclide therapy. These dynamics, while different than we had initially hypothesized, should encourage future imaging studies involving high dosage radiation treatments, with specific emphasis on the local immune and vascular response.

Keywords

References

  1. Cell Prolif. 2000 Oct;33(5):317-29 [PMID: 11063134]
  2. J R Soc Interface. 2017 Mar;14(128): [PMID: 28330985]
  3. Sci Rep. 2021 Apr 19;11(1):8520 [PMID: 33875739]
  4. Bull Math Biol. 2014 Sep;76(9):2306-33 [PMID: 25149139]
  5. Cancer Res. 2017 Aug 1;77(15):4171-4184 [PMID: 28536277]
  6. Neuro Oncol. 2020 Aug 17;22(8):1073-1113 [PMID: 32328653]
  7. Oncogene. 2001 Oct 25;20(48):7085-95 [PMID: 11704832]
  8. Phys Med Biol. 2012 Jan 7;57(1):225-40 [PMID: 22156038]
  9. Front Oncol. 2022 Feb 04;12:811415 [PMID: 35186747]
  10. Heliyon. 2022 Jul 06;8(7):e09830 [PMID: 35865988]
  11. Methods Mol Biol. 2018;1711:225-241 [PMID: 29344892]
  12. J Nucl Med. 2020 Aug;61(8):1178-1186 [PMID: 31862802]
  13. J R Soc Interface. 2015 Feb 6;12(103): [PMID: 25540239]
  14. Phys Med Biol. 2018 Dec 19;64(1):01TR01 [PMID: 30523903]
  15. Fundam Clin Pharmacol. 2017 Jun;31(3):347-358 [PMID: 27933657]
  16. Cancer Growth Metastasis. 2018 Mar 09;11:1179064418761639 [PMID: 29551910]
  17. Neuro Oncol. 2015 Mar;17(3):457-65 [PMID: 25452395]
  18. Cancers (Basel). 2020 Sep 03;12(9): [PMID: 32899427]
  19. Adv Drug Deliv Rev. 2022 Aug;187:114367 [PMID: 35654212]
  20. J Math Biol. 2009 Apr;58(4-5):561-78 [PMID: 18815786]
  21. Nat Commun. 2019 Jul 18;10(1):3170 [PMID: 31320621]
  22. Front Oncol. 2015 Mar 03;5:55 [PMID: 25785247]
  23. Clin Cancer Res. 2012 Sep 15;18(18):5071-80 [PMID: 22761472]
  24. J R Soc Interface. 2017 Nov;14(136): [PMID: 29118112]
  25. Med Phys. 2020 Dec;47(12):6039-6052 [PMID: 33118182]
  26. J Math Biol. 2019 Aug;79(3):941-967 [PMID: 31127329]
  27. Biomed Phys Eng Express. 2021 May 28;7(4): [PMID: 34050041]
  28. J Clin Neurosci. 2013 Apr;20(4):485-502 [PMID: 23416129]
  29. Radiat Oncol. 2020 Jan 2;15(1):4 [PMID: 31898514]
  30. AJNR Am J Neuroradiol. 2011 Dec;32(11):1978-85 [PMID: 21393407]
  31. Med Phys. 2009 Nov;36(11):4890-6 [PMID: 19994497]
  32. Phys Med Biol. 2010 Jun 21;55(12):3271-85 [PMID: 20484781]
  33. Magn Reson Imaging. 2000 Jul;18(6):689-95 [PMID: 10930778]
  34. Phys Biol. 2015 Jun 04;12(4):046006 [PMID: 26040472]
  35. Phys Med Biol. 2010 May 7;55(9):2429-49 [PMID: 20371913]
  36. Int J Radiat Oncol Biol Phys. 2021 Nov 1;111(3):693-704 [PMID: 34102299]
  37. N Engl J Med. 2005 Mar 10;352(10):987-96 [PMID: 15758009]
  38. Neuro Oncol. 2012 Apr;14(4):416-25 [PMID: 22427110]
  39. Biometrics. 1989 Mar;45(1):255-68 [PMID: 2720055]
  40. PLoS One. 2017 Aug 14;12(8):e0182888 [PMID: 28806773]
  41. Semin Radiat Oncol. 2020 Jan;30(1):4-15 [PMID: 31727299]

Grants

  1. R01 CA235800/NCI NIH HHS
  2. T32 EB007507/NIBIB NIH HHS
  3. U01 CA174706/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0responsemodelRNLmodelsusedtherapyradiationpredictglioblastomapatient-specificfamilytumorpredictions0canshownmathematicalimagingdatadynamicsSPECTrespectivelyfutureleave-one-outparametersmaketreatmentradionucliderecurrentpatientsdeliveryframeworkusingspatio-temporalpatient'slocalselectedgrowthcohortvolumetotalcellnumberachievedpopulationdifferenthighRhenium-186Relabelednanoliposomepromiseimproveoutcomeslocallydeliveringaffectedareasoptimizedevelopedimage-guidedMethods:calibratedreaction-diffusiontypemulti-modalitytenNCR01906385consistedlongitudinalmagneticresonanceMRIsinglephotonemissioncomputedtomographyestimateburdenactivityoptimalsimplifiedversionanalysisdevelopmentindividualbasedResults:AcrossableachieveSpearmancorrelationcoefficientsSCC9893comparedmeasuredPredictionsutilizingmethodSCCs8988acrossConclusion:calibrationsbiology-basedearlyFurthermoreindicatesdosesdeterminedassigndirectlyfollowingconclusionStatementSignificance:manuscriptexploresapplicationcomputationalknowledgeexamplesclinicaltesteddetermineapplicabilitycouplingtermslocalizedshowparameterestimationaccuratecomparisontrendsforecastmomentdeliveredInadditionsimulationpredictionaccuracymodelingmethodsevaluationgiveninsightinitiallyhypothesizedencouragestudiesinvolvingdosagetreatmentsspecificemphasisimmunevascularPredictingtreatedrhenium-186labellednanoliposomesComputationalMathematicalPatientcalibrationTheranostic

Similar Articles

Cited By