Neural mechanisms involved in female mate choice in invertebrates.

Sagrario Cordero-Molina, Ingrid Fetter-Pruneda, Jorge Contreras-Gardu��o
Author Information
  1. Sagrario Cordero-Molina: Laboratorio de Ecolog��a Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Aut��noma de M��xico, Ciudad de M��xico, Mexico.
  2. Ingrid Fetter-Pruneda: Departamento de Biolog��a Celular y Fisiolog��a, Instituto de Investigaciones Biom��dicas, Universidad Nacional Aut��noma de M��xico, Ciudad de M��xico, Mexico.
  3. Jorge Contreras-Gardu��o: Laboratorio de Ecolog��a Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Aut��noma de M��xico, Ciudad de M��xico, Mexico.

Abstract

Mate choice is a critical decision with direct implications for fitness. Although it has been recognized for over 150 years, our understanding of its underlying mechanisms is still limited. Most studies on mate choice focus on the evolutionary causes of behavior, with less attention given to the physiological and molecular mechanisms involved. This is especially true for invertebrates, where research on mate choice has largely focused on male behavior. This review summarizes the current state of knowledge on the neural, molecular and neurohormonal mechanisms of female choice in invertebrates, including behaviors before, during, and after copulation. We identify areas of research that have not been extensively explored in invertebrates, suggesting potential directions for future investigation. We hope that this review will stimulate further research in this area.

Keywords

References

  1. J Neurosci. 1995 Sep;15(9):5989-98 [PMID: 7666183]
  2. Curr Biol. 2014 Mar 31;24(7):731-7 [PMID: 24631240]
  3. Proc Biol Sci. 2015 Jun 22;282(1809):20150787 [PMID: 26041345]
  4. Curr Biol. 2018 Mar 19;28(6):902-914.e5 [PMID: 29526590]
  5. Proc Biol Sci. 2013 Jan 7;280(1750):20122396 [PMID: 23173212]
  6. Curr Biol. 2010 Mar 23;20(6):487-95 [PMID: 20226670]
  7. Evolution. 1994 Jun;48(3):711-733 [PMID: 28568272]
  8. J Insect Physiol. 2021 Jul;132:104253 [PMID: 34022190]
  9. J Comp Neurol. 1998 Jan 26;390(4):564-77 [PMID: 9450536]
  10. Proc Biol Sci. 2005 Dec 7;272(1580):2475-8 [PMID: 16271971]
  11. Anim Behav. 2000 Feb;59(2):311-317 [PMID: 10675253]
  12. Gen Comp Endocrinol. 1999 Jul;115(1):1-22 [PMID: 10375459]
  13. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3526-34 [PMID: 23980168]
  14. J Insect Physiol. 2006 Mar;52(3):221-30 [PMID: 16289569]
  15. Proc Biol Sci. 2003 Mar 22;270(1515):653-64 [PMID: 12769467]
  16. PLoS One. 2013 Sep 06;8(9):e72660 [PMID: 24039790]
  17. Science. 2005 May 20;308(5725):1148 [PMID: 15905396]
  18. Biol Rev Camb Philos Soc. 2000 Feb;75(1):21-64 [PMID: 10740892]
  19. J Evol Biol. 2010 Feb;23(2):271-81 [PMID: 20487130]
  20. Nat Neurosci. 2004 Oct;7(10):1048-54 [PMID: 15452576]
  21. Nat Ecol Evol. 2021 Aug;5(8):1165-1173 [PMID: 34155384]
  22. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4562-7 [PMID: 22393023]
  23. J Insect Physiol. 2008 Aug;54(8):1306-13 [PMID: 18675822]
  24. Trends Parasitol. 2008 Sep;24(9):386-91 [PMID: 18674968]
  25. PLoS Biol. 2018 Jun 6;16(6):e2005747 [PMID: 29874231]
  26. Genes Brain Behav. 2012 Mar;11(2):222-9 [PMID: 22008245]
  27. J Exp Zool. 1971 Mar;176(3):353-9 [PMID: 5548874]
  28. Philos Trans R Soc Lond B Biol Sci. 2006 Feb 28;361(1466):375-86 [PMID: 16612895]
  29. Proc Biol Sci. 2008 Nov 22;275(1651):2645-50 [PMID: 18700205]
  30. Proc Biol Sci. 2020 Mar 25;287(1923):20192765 [PMID: 32208837]
  31. PLoS Biol. 2021 Jun 30;19(6):e3001305 [PMID: 34191794]
  32. PLoS Biol. 2016 May 04;14(5):e1002455 [PMID: 27145127]
  33. Evolution. 1986 Sep;40(5):1084-1091 [PMID: 28556223]
  34. Curr Biol. 2010 Sep 28;20(18):1589-601 [PMID: 20832311]
  35. J Neuroendocrinol. 1994 Apr;6(2):211-6 [PMID: 8049720]
  36. Trends Ecol Evol. 1989 Mar;4(3):74-9 [PMID: 21227319]
  37. Curr Biol. 2015 Mar 16;25(6):790-797 [PMID: 25702579]
  38. Front Physiol. 2021 Sep 09;12:714247 [PMID: 34566680]
  39. Proc Biol Sci. 2009 Sep 7;276(1670):3105-11 [PMID: 19515667]
  40. J Neurosci. 1996 Jun 15;16(12):3900-11 [PMID: 8656284]
  41. Neuron. 2019 Jun 5;102(5):1025-1036.e6 [PMID: 31072787]
  42. Front Neuroendocrinol. 2011 Jan;32(1):53-69 [PMID: 20688099]
  43. J Proteome Res. 2018 Jan 5;17(1):440-454 [PMID: 29148801]
  44. BMC Evol Biol. 2009 Feb 26;9:47 [PMID: 19243634]
  45. J Neurogenet. 1998 Mar;12(2):101-14 [PMID: 10197160]
  46. Neurosci Biobehav Rev. 2014 Oct;46 Pt 4:509-18 [PMID: 25088579]
  47. Trends Ecol Evol. 2011 Dec;26(12):647-54 [PMID: 21890230]
  48. Nat Rev Neurosci. 2013 Oct;14(10):681-92 [PMID: 24052176]
  49. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1992 Jun;102(2):273-80 [PMID: 1358541]
  50. J Insect Physiol. 2010 Dec;56(12):1755-62 [PMID: 20650280]
  51. Proc Biol Sci. 2008 Feb 22;275(1633):393-402 [PMID: 18055387]
  52. Proc Natl Acad Sci U S A. 2021 Feb 23;118(8): [PMID: 33593899]
  53. Heredity (Edinb). 1948 Dec;2(Pt. 3):349-68 [PMID: 18103134]
  54. Curr Biol. 2014 May 5;24(9):1006-10 [PMID: 24746797]
  55. J Neurobiol. 1985 May;16(3):171-81 [PMID: 3925079]
  56. Sci Rep. 2021 Feb 12;11(1):3746 [PMID: 33580133]
  57. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5981-5 [PMID: 1321430]
  58. Exp Gerontol. 2015 Nov;71:103-8 [PMID: 26254745]
  59. Results Probl Cell Differ. 2017;63:389-401 [PMID: 28779327]
  60. J Exp Biol. 2002 May;205(Pt 9):1199-208 [PMID: 11948197]
  61. Nat Commun. 2010 Aug 10;1:52 [PMID: 20975717]
  62. J Insect Physiol. 2001 Jun;47(6):607-616 [PMID: 11249949]
  63. Horm Behav. 2019 Jun;112:1-9 [PMID: 30902535]
  64. Proc Biol Sci. 2012 Apr 7;279(1732):1359-65 [PMID: 21976688]
  65. Eur J Neurosci. 2002 May;15(10):1655-62 [PMID: 12059973]
  66. J Insect Physiol. 2012 May;58(5):628-33 [PMID: 22343017]
  67. Neuron. 2014 Jul 2;83(1):135-48 [PMID: 24991958]
  68. Science. 1977 Jul 15;197(4300):215-23 [PMID: 327542]
  69. Annu Rev Entomol. 2011;56:21-40 [PMID: 20868282]
  70. Nat Commun. 2017 Feb 01;8:14225 [PMID: 28145404]
  71. Dev Biol. 2003 Dec 1;264(1):179-90 [PMID: 14623240]
  72. Nature. 2021 Jan;589(7843):577-581 [PMID: 33239786]
  73. Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:10025-32 [PMID: 19528642]
  74. Brain Res Bull. 1997;44(4):397-407 [PMID: 9370204]
  75. Science. 2012 Oct 26;338(6106):540-3 [PMID: 23112335]
  76. Evolution. 1998 Feb;52(1):1-7 [PMID: 28568154]
  77. J Insect Physiol. 2000 Feb;46(2):191-201 [PMID: 12770251]
  78. Ecol Lett. 2022 May;25(5):1305-1322 [PMID: 35259282]
  79. Insect Mol Biol. 2013 Oct;22(5):562-73 [PMID: 23889463]
  80. Evolution. 2008 Jun;62(6):1294-304 [PMID: 18363867]
  81. Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20949-54 [PMID: 23213209]
  82. Insects. 2021 Oct 03;12(10): [PMID: 34680673]
  83. Curr Opin Neurobiol. 2000 Dec;10(6):790-5 [PMID: 11240291]
  84. J Exp Biol. 2005 Sep;208(Pt 18):3433-40 [PMID: 16155216]
  85. J Theor Biol. 1999 Mar 7;197(1):41-50 [PMID: 10036206]
  86. Annu Rev Entomol. 1996;41:473-94 [PMID: 15012338]
  87. Curr Biol. 2014 Jul 21;24(14):1584-1595 [PMID: 24998527]
  88. Proc Biol Sci. 2013 Nov 13;281(1774):20132694 [PMID: 24225467]
  89. Learn Mem. 1998 May-Jun;5(1-2):1-10 [PMID: 10454369]
  90. J Exp Biol. 2020 Sep 6;223(Pt 17): [PMID: 32895328]
  91. J Neurogenet. 2015 Mar;29(1):30-7 [PMID: 25585638]
  92. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Feb;189(2):105-14 [PMID: 12607039]
  93. PLoS One. 2014 Jan 31;9(1):e87972 [PMID: 24498233]
  94. iScience. 2023 Feb 02;26(3):106123 [PMID: 36876123]
  95. Nat Commun. 2022 Nov 15;13(1):6976 [PMID: 36379954]
  96. Proc Biol Sci. 2003 Nov 22;270(1531):2333-40 [PMID: 14667348]
  97. BMC Evol Biol. 2019 Feb 26;19(Suppl 1):51 [PMID: 30813903]
  98. Nat Commun. 2017 Nov 21;8(1):1630 [PMID: 29158481]
  99. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7128-33 [PMID: 17438290]
  100. Integr Comp Biol. 2020 Sep 1;60(3):712-721 [PMID: 32483613]
  101. Curr Biol. 2012 Jul 10;22(13):1155-65 [PMID: 22658598]
  102. Cell. 2014 Jan 16;156(1-2):221-35 [PMID: 24439378]
  103. J Neurosci. 2007 Jul 4;27(27):7174-82 [PMID: 17611271]
  104. Philos Trans R Soc Lond B Biol Sci. 2006 Feb 28;361(1466):235-59 [PMID: 16612884]
  105. Genetics. 2007 Feb;175(2):777-83 [PMID: 17110486]
  106. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5683-7 [PMID: 11331783]
  107. Curr Biol. 2020 Feb 3;30(3):396-407.e4 [PMID: 31902724]
  108. Curr Zool. 2019 Oct;65(5):571-577 [PMID: 31616488]
  109. Genetica. 2010 Jan;138(1):75-104 [PMID: 19705286]
  110. Genetics. 2002 Jan;160(1):211-24 [PMID: 11805057]
  111. Front Endocrinol (Lausanne). 2014 Dec 18;5:219 [PMID: 25566191]
  112. Arthropod Struct Dev. 2002 Jun;30(4):293-313 [PMID: 18088963]
  113. Nature. 1993 Oct 7;365(6446):545-8 [PMID: 8413608]
  114. Neuron. 2014 Jul 2;83(1):149-63 [PMID: 24991959]
  115. Science. 1982 May 28;216(4549):1012-4 [PMID: 6805073]
  116. J Comp Physiol A. 1989 Jan;164(3):359-63 [PMID: 2709341]
  117. Trends Ecol Evol. 1995 Dec;10(12):493-6 [PMID: 21237123]
  118. Curr Opin Neurobiol. 2018 Oct;52:139-148 [PMID: 29940518]
  119. Curr Opin Behav Sci. 2015 Jun;3:38-44 [PMID: 26146650]
  120. J Proteome Res. 2015 Oct 2;14(10):4382-93 [PMID: 26310634]
  121. Curr Biol. 2008 Feb 26;18(4):292-6 [PMID: 18291649]
  122. J Morphol. 2020 Jun;281(6):620-635 [PMID: 32383531]
  123. Nature. 2004 Apr 29;428(6986):939-41 [PMID: 15118726]
  124. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13732-6 [PMID: 9811869]
  125. iScience. 2022 Jul 02;25(8):104697 [PMID: 35880044]
  126. Neuron. 2005 Apr 21;46(2):247-60 [PMID: 15848803]
  127. Gen Comp Endocrinol. 2009 May 15;162(1):69-78 [PMID: 18495120]
  128. Cell Mol Life Sci. 2021 May;78(10):4805-4819 [PMID: 33837450]
  129. Brain Res. 1995 Sep 25;693(1-2):21-30 [PMID: 8653411]
  130. Horm Behav. 1998 Dec;34(3):248-61 [PMID: 9878274]

MeSH Term

Animals
Female
Male
Invertebrates
Biological Evolution
Knowledge

Word Cloud

Created with Highcharts 10.0.0choicemechanismsmateinvertebratesresearchbehaviormolecularinvolvedreviewneuralfemalesexualMatecriticaldecisiondirectimplicationsfitnessAlthoughrecognized150yearsunderstandingunderlyingstilllimitedstudiesfocusevolutionarycauseslessattentiongivenphysiologicalespeciallytruelargelyfocusedmalesummarizescurrentstateknowledgeneurohormonalincludingbehaviorscopulationidentifyareasextensivelyexploredsuggestingpotentialdirectionsfutureinvestigationhopewillstimulateareaNeuralinvertebratebrainconflictselection

Similar Articles

Cited By