Sleep and circadian rhythm disturbances are common features of Huntington's disease (HD). HD is an autosomal dominant neurodegenerative disorder that affects men and women in equal numbers, but some epidemiological studies as well as preclinical work indicate there may be sex differences in disease presentation and progression. Since sex differences in HD could provide important insights to understand cellular and molecular mechanism(s), we used the bacterial artificial chromosome transgenic mouse model of HD (BACHD) to examine whether sex differences in sleep/wake cycles are detectable in an animal model of the disease. Electroencephalography/electromyography (EEG/EMG) was used to measure sleep/wake states and polysomnographic patterns in young adult (12-week-old) male and female wild-type and BACHDmice. Our findings show that male, but not female, BACHDmice exhibited increased variation in phases of the rhythms as compared to age- and sex-matched wild-types. For both rapid-eye movement (REM) and non-rapid eye movement (NREM) sleep, genotypic and sex differences were detected. In particular, the BACHD males spent less time in NREM sleep and exhibited a more fragmented sleep than the other groups. Finally, in response to 6 h of sleep deprivation, both genotypes and sexes displayed the predicted homeostatic responses to sleep loss. These findings suggest that females are relatively protected early in disease progression in this HD model.
Bode, F. J., Stephan, M., Suhling, H., Pabst, R., Straub, R. H., Raber, K. A., Bonin, M., Nguyen, H. P., Riess, O., Bauer, A., Sjoberg, C., Petersén, A., & von Hörsten, S. (2008). Sex differences in a transgenic rat model of Huntington's disease: Decreased 17beta-estradiol levels correlate with reduced numbers of DARPP32+ neurons in males. Human Molecular Genetics, 17(17), 2595-2609. https://doi.org/10.1093/hmg/ddn159
Bode, F. J., Stephan, M., Wiehager, S., Nguyen, H. P., Björkqvist, M., von Hörsten, S., Bauer, A., & Petersén, A. (2009). Increased numbers of motor activity peaks during light cycle are associated with reductions in adrenergic alpha(2)-receptor levels in a transgenic Huntington's disease rat model. Behavioural Brain Research, 205(1), 175-182. https://doi.org/10.1016/j.bbr.2009.06.031
Borbély, A. A., Baumann, F., Brandeis, D., Strauch, I., & Lehmann, D. (1981). Sleep deprivation: Effect on sleep stages and EEG power density in man. Electroencephalography and Clinical Neurophysiology, 51(5), 483-495. https://doi.org/10.1016/0013-4694(81)90225-x
Bylsma, F. W., Peyser, C. E., Folstein, S. E., Folstein, M. F., Ross, C., & Brandt, J. (1994). EEG power spectra in Huntington's disease: Clinical and neuropsychological correlates. Neuropsychologia, 32, 137-150.
Colwell, C. S. (2021). Defining circadian disruption in neurodegenerative disorders. The Journal of Clinical Investigation, 131(19), e148288. https://doi.org/10.1172/JCI148288
Dale, M., Maltby, J., Shimozaki, S., Cramp, R., Rickards, H., & REGISTRY Investigators of the European Huntington's Disease Network. (2016). Disease stage, but not sex, predicts depression and psychological distress in Huntington's disease: A European population study. Journal of Psychosomatic Research, 80, 17-22. https://doi.org/10.1016/j.jpsychores.2015.11.003
Dorner, J. L., Miller, B. R., Barton, S. J., Brock, T. J., & Rebec, G. V. (2007). Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington's disease. Behavioural Brain Research, 178, 90-97. https://doi.org/10.1016/j.bbr.2006.12.004
Faragó, A., Zsindely, N., & Bodai, L. (2019). Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila. Scientific Reports, 9(1), 7174. https://doi.org/10.1038/s41598-019-43612-w
Feyissa, A. M., & Tatum, W. O. (2019). Adult EEG. Handbook of Clinical Neurology, 160, 103-124.
Fifel, K., & Videnovic, A. (2020). Circadian alterations in patients with neurodegenerative diseases: Neuropathological basis of underlying network mechanisms. Neurobiology of Disease, 144, 105029. https://doi.org/10.1016/j.nbd.2020.105029
Fisher, S. P., Black, S. W., Schwartz, M. D., Wilk, A. J., Chen, T. M., Lincoln, W. U., Liu, H. W., Kilduff, T. S., & Morairty, S. R. (2013). Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington's disease. Brain, 136(Pt 7), 2159-2172. https://doi.org/10.1093/brain/awt132
Fisher, S. P., Schwartz, M. D., Wurts-Black, S., Thomas, A. M., Chen, T. M., Miller, M. A., Palmerston, J. B., Kilduff, T. S., & Morairty, S. R. (2016). Quantitative electroencephalographic analysis provides an early-stage indicator of disease onset and progression in the zQ175 knock-in mouse model of Huntington's disease. Sleep, 39(2), 379-391. https://doi.org/10.5665/sleep.5448
Fitzgerald, P. J., & Watson, B. O. (2018). Gamma oscillations as a biomarker for major depression: An emerging topic. Translational Psychiatry, 8, 177.
Foroud, T., Gray, J., Ivashina, J., & Conneally, P. M. (1999). Differences in duration of Huntington's disease based on age at onset. Journal of Neurology, Neurosurgery, and Psychiatry, 66(1), 52-56.
Gray, M., Shirasaki, D. I., Cepeda, C., André, V. M., Wilburn, B., Lu, X.-H., Tao, J., Yamazaki, I., Li, S.-H., Sun, Y. E., Li, X.-J., Levine, M. S., & Yang, X. W. (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. The Journal of Neuroscience, 28, 6182-6195.
Gu, X., Richman, J., Langfelder, P., Wang, N., Zhang, S., Bañez-Coronel, M., Wang, H. B., Yang, L., Ramanathan, L., Deng, L., Park, C. S., Choi, C. R., Cantle, J. P., Gao, F., Gray, M., Coppola, G., Bates, G. P., Ranum, L. P. W., Horvath, S., … Yang, X. W. (2022). Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice. Neuron, 110(7), 1173-1192.e7. https://doi.org/10.1016/j.neuron.2022.01.006
Guerra, B., Díaz, M., Alonso, R., & Marin, R. (2004). Plasma membrane oestrogen receptor mediates neuroprotection against beta-amyloid toxicity through activation of Raf-1/MEK/ERK cascade in septal-derived cholinergic SN56 cells. Journal of Neurochemistry, 91(1), 99-109.
Han, C. X., Wang, J., Yi, G. S., & Che, Y. Q. (2013). Investigation of EEG abnormalities in the early stage of Parkinson's disease. Cognitive Neurodynamics, 7(4), 351-359.
Hentosh, S., Zhu, L., Patino, J., Furr, J. W., Rocha, N. P., & Furr Stimming, E. (2021). Sex differences in Huntington's disease: Evaluating the enroll-HD database. Movement Disorders Clinical Practice, 8(3), 420-426. https://doi.org/10.1002/mdc3.13178
Horvath, A., Szucs, A., Csukly, G., Sakovics, A., Stefanics, G., & Kamondi, A. (2018). EEG and ERP biomarkers of Alzheimer's disease: A critical review. Frontiers in Bioscience (Landmark Edition), 23, 183-220.
Hunter, A., Bordelon, Y., Cook, I., & Leuchter, A. (2010). QEEG measures in Huntington's disease: A pilot study. PLoS Currents, 2, RRN1192. https://doi.org/10.1371/currents.RRN1192
Kantor, S., Szabo, L., Varga, J., Cuesta, M., & Morton, A. J. (2013). Progressive sleep and electroencephalogram changes in mice carrying the Huntington's disease mutation. Brain, 136(Pt 7), 2147-2158.
Kehoe, P., Krawczak, M., Harper, P. S., Owen, M. J., & Jones, A. L. (1999). Age of onset in Huntington disease: Sex specific influence of apolipoprotein E genotype and normal CAG repeat length. Journal of Medical Genetics, 36(2), 108-111.
Koszegi, Z., & Cheong, R. Y. (2022). Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Frontiers in Endocrinology, 13, 999236. https://doi.org/10.3389/fendo.2022.999236
Kudo, T., Schroeder, A., Loh, D. H., Kuljis, D., Jordan, M. C., Roos, K. P., & Colwell, C. S. (2011). Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. Experimental Neurology, 228, 80-90.
Kuljis, D. A., Gad, L., Loh, D. H., MacDowell Kaswan, Z., Hitchcock, O. N., Ghiani, C. A., & Colwell, C. S. (2016). Sex differences in circadian dysfunction in the BACHD mouse model of Huntington's disease. PLoS One, 11(2), e0147583.
Lebreton, F., Cayzac, S., Pietropaolo, S., Jeantet, Y., & Cho, Y. H. (2015). Sleep physiology alterations precede plethoric phenotypic changes in R6/1 Huntington's disease mice. PLoS One, 10(5), e0126972. https://doi.org/10.1371/journal.pone.0126972
Leuchter, M. K., Donzis, E. J., Cepeda, C., Hunter, A. M., Estrada-Sánchez, A. M., Cook, I. A., Levine, M. S., & Leuchter, A. F. (2017). Quantitative electroencephalographic biomarkers in preclinical and human studies of Huntington's disease: Are they fit-for-purpose for treatment development? Frontiers in Neurology, 8, 91. https://doi.org/10.3389/fneur.2017.00091
Loh, D. H., Kudo, T., Truong, D., Wu, Y., & Colwell, C. S. (2013). The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep. PLoS One, 8(7), e69993.
Long, S., Ding, R., Wang, J., Yu, Y., Lu, J., & Yao, D. (2021). Sleep quality and electroencephalogram delta power. Frontiers in Neuroscience, 15, 803507. https://doi.org/10.3389/fnins.2021.803507
Morton, A. J. (2013). Circadian and sleep disorder in Huntington's disease. Experimental Neurology, 243, 34-44.
Morton, A. J., Rudiger, S. R., Wood, N. I., Sawiak, S. J., Brown, G. C., Mclaughlan, C. J., Kuchel, T. R., Snell, R. G., Faull, R. L., & Bawden, C. S. (2014). Early and progressive circadian abnormalities in Huntington's disease sheep are unmasked by social environment. Human Molecular Genetics, 23(13), 3375-3383. https://doi.org/10.1093/hmg/ddu047
Morton, A. J., Wood, N. I., Hastings, M. H., Hurelbrink, C., Barker, R. A., & Maywood, E. S. (2005). Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease. The Journal of Neuroscience, 25(1), 157-163.
Oakeshott, S., Balci, F., Filippov, I., Murphy, C., Port, R., Connor, D., Paintdakhi, A., Lesauter, J., Menalled, L., Ramboz, S., Kwak, S., Howland, D., Silver, R., & Brunner, D. (2011). Circadian abnormalities in motor activity in a BAC transgenic mouse model of Huntington's disease. PLoS Currents, 3, RRN1225. https://doi.org/10.1371/currents.RRN1225
Padovan-Neto, F. E., Jurkowski, L., Murray, C., Stutzmann, G. E., Kwan, M., Ghavami, A., Beaumont, V., Park, L. C., & West, A. R. (2019). Age- and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington's disease. Nitric Oxide: Biology and Chemistry, 83, 40-50. https://doi.org/10.1016/j.niox.2018.12.002
Painold, A., Anderer, P., Holl, A. K., Letmaier, M., Saletu-Zyhlarz, G. M., Saletu, B., & Bonelli, R. M. (2010). Comparative EEG mapping studies in Huntington's disease patients and controls. Journal of Neural Transmission (Vienna), 117(11), 1307-1318. https://doi.org/10.1007/s00702-010-0491-7
Paul, K. N., Dugovic, C., Turek, F. W., & Laposky, A. D. (2006). Diurnal sex differences in the sleep-wake cycle of mice are dependent on gonadal function. Sleep, 29, 1211-1223.
Paul, K. N., Laposky, A. D., & Turek, F. W. (2009). Reproductive hormone replacement alters sleep in mice. Neuroscience Letters, 463, 239-243.
Piano, C., Mazzucchi, E., Bentivoglio, A. R., Losurdo, A., Calandra Buonaura, G., Imperatori, C., Cortelli, P., & Della Marca, G. (2017). Wake and sleep EEG in patients with Huntington disease: An eLORETA study and review of the literature. Clinical EEG and Neuroscience, 48(1), 60-71. https://doi.org/10.1177/1550059416632413
Rieke, L., Fels, M., Schubert, R., Habbel, B., Matheis, T., Schuldenzucker, V., Kemper, N., & Reilmann, R. (2019). Activity behaviour of Minipigs transgenic for the Huntington gene. Journal of Huntington's Disease, 8(1), 23-31. https://doi.org/10.3233/JHD-180325
Saby, J. N., & Marshall, P. J. (2012). The utility of EEG band power analysis in the study of infancy and early childhood. Developmental Neuropsychology, 37(3), 253-273.
Sebastián-Romagosa, M., Udina, E., Ortner, R., Dinarès-Ferran, J., Cho, W., Murovec, N., Matencio-Peralba, C., Sieghartsleitner, S., Allison, B. Z., & Guger, C. (2020). EEG biomarkers related with the functional state of stroke patients. Frontiers in Neuroscience, 14, 582.
Tecalco-Cruz, A. C., López-Canovas, L., & Azuara-Liceaga, E. (2023). Estrogen signaling via estrogen receptor alpha and its implications for neurodegeneration associated with Alzheimer's disease in aging women. Metabolic Brain Disease, 38, 783-793. https://doi.org/10.1007/s11011-023-01161-2
van Duijn, E., Craufurd, D., Hubers, A. A., Giltay, E. J., Bonelli, R., Rickards, H., Anderson, K. E., van Walsem, M. R., van der Mast, R. C., Orth, M., Landwehrmeyer, G. B., & European Huntington's Disease Network Behavioural Phenotype Working Group. (2014). Neuropsychiatric symptoms in a European Huntington's disease cohort (REGISTRY). Journal of Neurology, Neurosurgery, and Psychiatry, 85(12), 1411-1418.
van Wamelen, D. J., Aziz, N. A., Roos, R. A., & Swaab, D. F. (2014). Hypothalamic alterations in Huntington's disease patients: Comparison with genetic rodent models. Journal of Neuroendocrinology, 26(11), 761-775.
Vas, S., Nicol, A. U., Kalmar, L., Miles, J., & Morton, A. J. (2021). Abnormal patterns of sleep and EEG power distribution during non-rapid eye movement sleep in the sheep model of Huntington's disease. Neurobiology of Disease, 155, 105367. https://doi.org/10.1016/j.nbd.2021.105367
Veenman, L. (2020, October 14). Raloxifene as treatment for various types of brain injuries and neurodegenerative diseases: A good start. International Journal of Molecular Sciences, 21(20), 7586. https://doi.org/10.3390/ijms21207586
Wexler, N. S., Lorimer, J., Porter, J., Gomez, F., Moskowitz, C., Shackell, E., Marder, K., Penchaszadeh, G., Roberts, S. A., Gayán, J., Brocklebank, D., Cherny, S. S., Cardon, L. R., Gray, J., Dlouhy, S. R., Wiktorski, S., Hodes, M. E., Conneally, P. M., Penney, J. B., … U.S.-Venezuela Collaborative Research Project. (2004). Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3498-3503.
Wiegand, M., Möller, A. A., Schreiber, W., Lauer, C., & Krieg, J. C. (1991). Brain morphology and sleep EEG in patients with Huntington's disease. European Archives of Psychiatry and Clinical Neuroscience, 240(3), 148-152. https://doi.org/10.1007/BF02190755
Woodard, C. L., Bolaños, F., Boyd, J. D., Silasi, G., Murphy, T. H., & Raymond, L. A. (2017). An automated home-cage system to assess learning and performance of a skilled motor task in a mouse model of Huntington's disease. eNeuro, 4(5), ENEURO.0141-17.2017. https://doi.org/10.1523/ENEURO.0141-17.2017
Xu, F., Kula-Eversole, E., Iwanaszko, M., Hutchison, A. L., Dinner, A., & Allada, R. (2019). Circadian clocks function in concert with heat shock organizing protein to modulate mutant huntingtin aggregation and toxicity. Cell Reports, 27(1), 59-70.e4. https://doi.org/10.1016/j.celrep.2019.03.015
Yilmaz, C., Karali, K., Fodelianaki, G., Gravanis, A., Chavakis, T., Charalampopoulos, I., & Alexaki, V. I. (2019). Neurosteroids as regulators of neuroinflammation. Frontiers in Neuroendocrinology, 55, 100788. https://doi.org/10.1016/j.yfrne.2019.100788
Zielonka, D., Marinus, J., Roos, R. A., De Michele, G., Di Donato, S., Putter, H., Marcinkowski, J., Squitieri, F., Bentivoglio, A. R., & Landwehrmeyer, G. B. (2013). The influence of gender on phenotype and disease progression in patients with Huntington's disease. Parkinsonism & Related Disorders, 19(2), 192-197.
Zielonka, D., & Stawinska-Witoszynska, B. (2020). Gender differences in non-sex linked disorders: Insights from Huntington's disease. Frontiers in Neurology, 11, 571. https://doi.org/10.3389/fneur.2020.00571