Neuroimaging, wearable sensors, and blood-based biomarkers reveal hyperacute changes in the brain after sub-concussive impacts.

Carissa Grijalva, Veronica A Mullins, Bryce R Michael, Dallin Hale, Lyndia Wu, Nima Toosizadeh, Floyd H Chilton, Kaveh Laksari
Author Information
  1. Carissa Grijalva: University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States.
  2. Veronica A Mullins: University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States.
  3. Bryce R Michael: University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States.
  4. Dallin Hale: University of Arizona, Department of Physiology, Tucson, AZ, United States.
  5. Lyndia Wu: Univerisity of British Columbia, Department of Mechanical Engineering, Vancouver, BC, Canada.
  6. Nima Toosizadeh: University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States.
  7. Floyd H Chilton: University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States.
  8. Kaveh Laksari: University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States.

Abstract

Impacts in mixed martial arts (MMA) have been studied mainly in regard to the long-term effects of concussions. However, repetitive sub-concussive head impacts at the hyperacute phase (minutes after impact), are not understood. The head experiences rapid acceleration similar to a concussion, but without clinical symptoms. We utilize portable neuroimaging technology - transcranial Doppler (TCD) ultrasound and functional near infrared spectroscopy (fNIRS) - to estimate the extent of pre- and post-differences following contact and non-contact sparring sessions in nine MMA athletes. In addition, the extent of changes in neurofilament light (NfL) protein biomarker concentrations, and neurocognitive/balance parameters were determined following impacts. Athletes were instrumented with sensor-based mouth guards to record head kinematics. TCD and fNIRS results demonstrated significantly increased blood flow velocity ( = 0.01) as well as prefrontal ( = 0.01) and motor cortex ( = 0.04) oxygenation, only following the contact sparring sessions. This increase after contact was correlated with the cumulative angular acceleration experienced during impacts ( = 0.01). In addition, the NfL biomarker demonstrated positive correlations with angular acceleration ( = 0.03), and maximum principal and fiber strain ( = 0.01). On average athletes experienced 23.9 ± 2.9 g peak linear acceleration, 10.29 ± 1.1 rad/s peak angular velocity, and 1,502.3 ± 532.3 rad/s angular acceleration. Balance parameters were significantly increased following contact sparring for medial-lateral (ML) center of mass (COM) sway, and ML ankle angle ( = 0.01), illustrating worsened balance. These combined results reveal significant changes in brain hemodynamics and neurophysiological parameters that occur immediately after sub-concussive impacts and suggest that the physical impact to the head plays an important role in these changes.

Keywords

References

  1. Sci Rep. 2017 Dec 21;8(1):855 [PMID: 29321637]
  2. Annu Rev Clin Psychol. 2015;11:309-30 [PMID: 25581233]
  3. Int J Chron Obstruct Pulmon Dis. 2018 Dec 18;14:39-49 [PMID: 30587960]
  4. J Biomech. 2016 Sep 6;49(13):2918-2924 [PMID: 27497499]
  5. J Am Coll Surg. 2016 Aug;223(2):240-8 [PMID: 27155751]
  6. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9 [PMID: 9465103]
  7. Clin Physiol Funct Imaging. 2018 Jul;38(4):573-585 [PMID: 28626873]
  8. J Neurotrauma. 2017 Jan 15;34(2):328-340 [PMID: 27029716]
  9. J Biomech Eng. 2015 Mar;137(3): [PMID: 25363079]
  10. Res Sports Med. 2020 Jan-Mar;28(1):55-71 [PMID: 30880469]
  11. J R Soc Interface. 2015 Jul 6;12(108):20150331 [PMID: 26063824]
  12. Am J Sports Med. 2014 Jun;42(6):1352-8 [PMID: 24658345]
  13. Front Neurol. 2018 Apr 05;9:200 [PMID: 29674994]
  14. JAMA Neurol. 2014 Jun;71(6):684-92 [PMID: 24627036]
  15. Neuroimage. 2009 Mar;45(1 Suppl):S187-98 [PMID: 19084070]
  16. Stapp Car Crash J. 2014 Nov;58:29-61 [PMID: 26192949]
  17. J Mot Behav. 2005 Jul;37(4):259-64 [PMID: 15967751]
  18. BMJ Open Sport Exerc Med. 2018 Aug 27;4(1):e000433 [PMID: 30233810]
  19. Cognition. 2002 Apr;83(3):B63-8 [PMID: 11934408]
  20. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2095-100 [PMID: 11172081]
  21. Sci Rep. 2019 Nov 22;9(1):17326 [PMID: 31758002]
  22. J Am Geriatr Soc. 2015 Jun;63(6):1181-6 [PMID: 26096391]
  23. Neuroimage. 2009 Jan 15;44(2):428-47 [PMID: 18848897]
  24. Med Image Anal. 2007 Dec;11(6):616-29 [PMID: 17643341]
  25. Proc Inst Mech Eng H. 2020 Dec;234(12):1472-1483 [PMID: 32799750]
  26. Brain Inj. 2016;30(9):1068-74 [PMID: 27184946]
  27. Front Hum Neurosci. 2023 Sep 14;17:1191284 [PMID: 37780960]
  28. Ann Indian Acad Neurol. 2013 Apr;16(2):174-9 [PMID: 23956559]
  29. J Head Trauma Rehabil. 2016 May-Jun;31(3):215-24 [PMID: 26098254]
  30. Alzheimers Res Ther. 2015 Oct 12;7(1):62 [PMID: 26455775]
  31. Front Bioeng Biotechnol. 2020 Sep 25;8:555493 [PMID: 33102454]
  32. Sci Rep. 2019 Jul 29;9(1):10911 [PMID: 31358792]
  33. Brain Imaging Behav. 2017 Feb;11(1):98-112 [PMID: 26809358]
  34. Biomech Model Mechanobiol. 2018 Feb;17(1):235-247 [PMID: 28856485]
  35. Comput Intell Neurosci. 2011;2011:156869 [PMID: 21253357]
  36. Neuroimage. 2004 Jan;21(1):99-111 [PMID: 14741647]
  37. Pediatrics. 2012 Jan;129(1):28-37 [PMID: 22129537]
  38. J Neurotrauma. 2020 Jul 1;37(13):1537-1545 [PMID: 32024456]
  39. JAMA Pediatr. 2020 Jan 1;174(1):79-85 [PMID: 31710349]
  40. Nutrients. 2022 May 20;14(10): [PMID: 35631280]
  41. J Neurotrauma. 2017 Nov 15;34(22):3097-3106 [PMID: 28627298]
  42. Biomech Model Mechanobiol. 2017 Oct;16(5):1709-1727 [PMID: 28500358]
  43. JAMA Neurol. 2015 May;72(5):530-8 [PMID: 25730545]
  44. BMC Geriatr. 2009 Sep 01;9:41 [PMID: 19723315]
  45. J Neuroimaging. 2002 Jul;12(3):236-44 [PMID: 12116742]
  46. Front Neurol. 2019 Jun 11;10:590 [PMID: 31244755]
  47. J Neurotrauma. 2015 Apr 1;32(7):441-54 [PMID: 24735430]
  48. J Neurotrauma. 2020 Apr 1;37(7):982-993 [PMID: 31856650]
  49. Sports Med. 2007;37(6):467-76 [PMID: 17503873]
  50. Sensors (Basel). 2021 Feb 24;21(5): [PMID: 33668311]
  51. J Neuroeng Rehabil. 2014 Oct 27;11:149 [PMID: 25348927]
  52. Phys Med Biol. 1988 Dec;33(12):1433-42 [PMID: 3237772]
  53. J Head Trauma Rehabil. 2016 May-Jun;31(3):159-66 [PMID: 25931186]
  54. CNS Neurosci Ther. 2018 Jun;24(6):539-548 [PMID: 29359534]
  55. Brain Imaging Behav. 2014 Dec;8(4):621-34 [PMID: 24477579]
  56. Neurophotonics. 2016 Jul;3(3):031405 [PMID: 27054143]
  57. Phys Rev Lett. 2018 Mar 30;120(13):138101 [PMID: 29694192]
  58. Orthop J Sports Med. 2021 Dec 07;9(12):23259671211059815 [PMID: 34901294]
  59. Sports Health. 2019 May/Jun;11(3):280-285 [PMID: 30768376]
  60. Brain Imaging Behav. 2016 Sep;10(3):792-8 [PMID: 26286826]
  61. J Exerc Rehabil. 2022 Jun 27;18(3):142-154 [PMID: 35846227]
  62. Br J Sports Med. 2017 Jun;51(11):838-847 [PMID: 28446457]
  63. Brain Imaging Behav. 2014 Sep;8(3):446-59 [PMID: 24085609]
  64. Clin Sci (Lond). 2013 Feb;124(3):177-89 [PMID: 22913765]
  65. Neurology. 2018 May 15;90(20):e1780-e1788 [PMID: 29653990]
  66. Ann Biomed Eng. 2013 Sep;41(9):1939-49 [PMID: 23604848]
  67. Ann Biomed Eng. 2012 Jan;40(1):127-40 [PMID: 21994062]
  68. Acta Biomater. 2017 Jan 15;48:319-340 [PMID: 27989920]
  69. Nat Rev Neurol. 2016 Oct;12(10):563-74 [PMID: 27632903]
  70. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6 [PMID: 10590970]
  71. Am J Phys Med Rehabil. 2019 Oct;98(10):859-865 [PMID: 31441834]
  72. J Clin Med. 2018 Nov 22;7(12): [PMID: 30469482]
  73. J Int Neuropsychol Soc. 2013 Sep;19(8):863-72 [PMID: 23829951]
  74. Comput Methods Biomech Biomed Engin. 2021 Feb;24(3):278-288 [PMID: 33017178]
  75. Ann Biomed Eng. 2015 Aug;43(8):1918-34 [PMID: 25533767]
  76. Neurology. 2004 May 11;62(9):1497-502 [PMID: 15136671]
  77. Dev Neuropsychol. 2015 Jan;40(1):51-6 [PMID: 25649781]
  78. PLoS One. 2015 Feb 02;10(2):e0117286 [PMID: 25643046]
  79. J Neuroimaging. 2023 Jul-Aug;33(4):534-546 [PMID: 37183044]
  80. J Neurotrauma. 2020 Jan 15;37(2):347-356 [PMID: 31702476]
  81. Curr Neurol Neurosci Rep. 2013 Dec;13(12):407 [PMID: 24136455]
  82. Handb Clin Neurol. 2018;158:205-216 [PMID: 30482348]
  83. Front Aging Neurosci. 2016 Jul 07;8:167 [PMID: 27458374]
  84. Neuroimage. 2004 Jan;21(1):283-90 [PMID: 14741666]
  85. J Neuroimaging. 2021 May;31(3):588-601 [PMID: 33783915]
  86. Semin Neurol. 2012 Sep;32(4):411-20 [PMID: 23361485]
  87. J Neurotrauma. 2016 Jul 1;33(13):1227-36 [PMID: 26414315]
  88. Front Neurol. 2020 Jul 24;11:738 [PMID: 32849205]
  89. Am J Phys Med Rehabil. 2019 Jul;98(7):566-576 [PMID: 31219809]
  90. J Biomed Opt. 2007 Nov-Dec;12(6):064010 [PMID: 18163826]
  91. Ann Biomed Eng. 2016 Apr;44(4):1234-45 [PMID: 26289941]
  92. Sports Biomech. 2024 Aug;23(8):1083-1105 [PMID: 34011240]
  93. PLoS One. 2015 Feb 06;10(2):e0118061 [PMID: 25659079]
  94. Ann Biomed Eng. 2021 Mar;49(3):1119-1120 [PMID: 33725223]

Grants

  1. R01 AT008621/NCCIH NIH HHS
  2. R21 EB032187/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0=0impactsacceleration01headfollowingcontactchangesangularsub-concussivesparringparameters±1MMAhyperacuteimpact-DopplerTCDultrasoundspectroscopyfNIRSextentsessionsathletesadditionNfLbiomarkerresultsdemonstratedsignificantlyincreasedvelocityexperienced9peakrad/s3MLrevealbrainImpactsmixedmartialartsstudiedmainlyregardlong-termeffectsconcussionsHoweverrepetitivephaseminutesunderstoodexperiencesrapidsimilarconcussionwithoutclinicalsymptomsutilizeportableneuroimagingtechnologytranscranialfunctionalnearinfraredestimatepre-post-differencesnon-contactnineneurofilamentlightproteinconcentrationsneurocognitive/balancedeterminedAthletesinstrumentedsensor-basedmouthguardsrecordkinematicsbloodflowwellprefrontalmotorcortex04oxygenationincreasecorrelatedcumulativepositivecorrelations03maximumprincipalfiberstrainaverage232glinear1029502532Balancemedial-lateralcentermassCOMswayankleangleillustratingworsenedbalancecombinedsignificanthemodynamicsneurophysiologicaloccurimmediatelysuggestphysicalplaysimportantroleNeuroimagingwearablesensorsblood-basedbiomarkersFunctionalnear-infraredHyperacuteSub-concussiveTranscranial

Similar Articles

Cited By (3)