Treatment of MRSA Infection: Where are We?

Adila Nazli, Wenlan Tao, Hengyao You, Xiaoli He, Yun He
Author Information
  1. Adila Nazli: Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
  2. Wenlan Tao: Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China.
  3. Hengyao You: Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
  4. Xiaoli He: Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China.
  5. Yun He: Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

Abstract

is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.

Keywords

References

  1. Walsh L.; Johnson C.N.; Hill C.; Ross R.P.; Efficacy of phage- and bacteriocin-based therapies in combatting nosocomial MRSA infections. Front Mol Biosci 2021,8(4),654038 [DOI: 10.3389/fmolb.2021.654038]
  2. Diekema D.J.; Climo M.; Preventing MRSA infections. JAMA 2008,299(10),1190-1192 [DOI: 10.1001/jama.299.10.1190]
  3. Harkins C.P.; Pichon B.; Doumith M.; Parkhill J.; Westh H.; Tomasz A.; de Lencastre H.; Bentley S.D.; Kearns A.M.; Holden M.T.G.; Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 2017,18(1),130-141 [DOI: 10.1186/s13059-017-1252-9]
  4. Morell E.A.; Balkin D.M.; Methicillin-resistant Staphylococcus aureus: A pervasive pathogen highlights the need for new antimicrobial development. Yale J Biol Med 2010,83(4),223-233 [PMID: 21165342]
  5. Shanmuganathan V.A.; Armstrong M.; Buller A.; Tullo A.B.; External ocular infections due to methicillin-resistant Staphylococcus aureus (MRSA). Eye (Lond) 2005,19(3),284-291 [DOI: 10.1038/sj.eye.6701465]
  6. Villegas-Estrada A.; Lee M.; Hesek D.; Vakulenko S.B.; Mobashery S.; Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: Potent inhibition of PBP 2a by two anti-MRSA ��-lactam antibiotics. J Am Chem Soc 2008,130(29),9212-9213 [DOI: 10.1021/ja8029448]
  7. El Amin N.M.; Faidah H.S.; Methicillin-resistant Staphylococcus aureus in the Western region of Saudi Arabia: Prevalence and antibiotic susceptibility pattern. Ann Saudi Med 2012,32(5),513-516 [DOI: 10.5144/0256-4947.2012.513]
  8. Chatterjee S.S.; Ray P.; Aggarwal A.; Das A.; Sharma M.; A community-based study on nasal carriage of Staphylococcus aureus. Indian J Med Res 2009,130(6),742-748 [PMID: 20090137]
  9. Stefani S.; Chung D.R.; Lindsay J.A.; Friedrich A.W.; Kearns A.M.; Westh H.; MacKenzie F.M.; Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 2012,39(4),273-282 [DOI: 10.1016/j.ijantimicag.2011.09.030]
  10. von Eiff C.; Becker K.; Machka K.; Stammer H.; Peters G.; Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 2001,344(1),11-16 [DOI: 10.1056/NEJM200101043440102]
  11. Clarridge J.E.; Harrington A.T.; Roberts M.C.; Soge O.O.; Maquelin K.; Impact of strain typing methods on assessment of relationship between paired nares and wound isolates of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2013,51(1),224-231 [DOI: 10.1128/JCM.02423-12]
  12. Lakhundi S.; Zhang K.; Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 2018,31(4),e00020-18 [DOI: 10.1128/CMR.00020-18]
  13. David M.Z.; Cadilla A.; Boyle-Vavra S.; Daum R.S.; Replacement of HA-MRSA by CA-MRSA infections at an academic medical center in the midwestern United States, 2004-5 to 2008. PLoS One 2014,9(4),e92760 [DOI: 10.1371/journal.pone.0092760]
  14. Bean H.D.; Zhu J.; Sengle J.C.; Hill J.E.; Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS). J Breath Res 2014,8(4),041001-41001 [DOI: 10.1088/1752-7155/8/4/041001]
  15. Tenover F.; Biddle J.W.; Lancaster M.V.; Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg Infect Dis 2001,7(2),327-332 [DOI: 10.3201/eid0702.010237]
  16. Shrivastava S.; Shrivastava P.; Ramasamy J.; World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J Med Society 2018,32(1),76-77 [DOI: 10.4103/jms.jms_25_17]
  17. Bassetti M.; Del Puente F.; Magnasco L.; Giacobbe D.R.; Innovative therapies for acute bacterial skin and skin-structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus : Advances in phase I and II trials. Expert Opin Investig Drugs 2020,29(5),495-506 [DOI: 10.1080/13543784.2020.1750595]
  18. French G.L.; Bactericidal agents in the treatment of MRSA infections--the potential role of daptomycin. J Antimicrob Chemother 2006,58(6),1107-1117 [DOI: 10.1093/jac/dkl393]
  19. Zeller J.L.; Burke A.E.; Glass R.M.; MRSA Infections. JAMA 2007,298(15),1826-1826 [DOI: 10.1001/jama.298.15.1826]
  20. Wilcox M.H.; Hall J.; Pike H.; Templeton P.A.; Fawley W.N.; Parnell P.; Verity P.; Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J Hosp Infect 2003,54(3),196-201 [DOI: 10.1016/S0195-6701(03)00147-6]
  21. Hsu D.I.; Hidayat L.K.; Quist R.; Hindler J.; Karlsson A.; Yusof A.; Wong-Beringer A.; Comparison of method-specific vancomycin minimum inhibitory concentration values and their predictability for treatment outcome of meticillin-resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Agents 2008,32(5),378-385 [DOI: 10.1016/j.ijantimicag.2008.05.007]
  22. Kurosu M.; Siricilla S.; Mitachi K.; Advances in MRSA drug discovery: Where are we and where do we need to be? Expert Opin Drug Discov 2013,8(9),1095-1116 [DOI: 10.1517/17460441.2013.807246]
  23. Weis F.; Beiras-Fernandez A.; Schelling G.; Daptomycin, a lipopeptide antibiotic in clinical practice. Curr Opin Investig Drugs 2008,9(8),879-884 [PMID: 18666036]
  24. Tedesco K.L.; Rybak M.J.; Daptomycin. Pharmacotherapy 2004,24(1),41-57 [DOI: 10.1592/phco.24.1.41.34802]
  25. Enoch D.A.; Bygott J.M.; Daly M.L.; Karas J.A.; Daptomycin. J Infect 2007,55(3),205-213 [DOI: 10.1016/j.jinf.2007.05.180]
  26. Patel J.B.; Jevitt L.A.; Hageman J.; McDonald L.C.; Tenover F.C.; An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in Staphylococcus aureus. Clin Infect Dis 2006,42(11),1652-1653 [DOI: 10.1086/504084]
  27. Kishor K.; Dhasmana N.; Kamble S.; Sahu R.; Linezolid induced adverse drug reactions-an update. Curr Drug Metab 2015,16(7),553-559 [DOI: 10.2174/1389200216666151001121004]
  28. Stein G.E.; Wells E.M.; The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus : Vancomycin and linezolid. Curr Med Res Opin 2010,26(3),571-588 [DOI: 10.1185/03007990903512057]
  29. Greer N.D.; Tigecycline (Tygacil): The first in the glycylcycline class of antibiotics. Proc Bayl Univ Med Cent 2006,19(2),155-161 [DOI: 10.1080/08998280.2006.11928154]
  30. Frei C.R.; Miller M.L.; Lewis J.S.; Lawson K.A.; Hunter J.M.; Oramasionwu C.U.; Talbert R.L.; Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. J Am Board Fam Med 2010,23(6),714-719 [DOI: 10.3122/jabfm.2010.06.090270]
  31. Goldstein E.J.C.; Proctor R.A.; Role of folate antagonists in the treatment of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2008,46(4),584-593 [DOI: 10.1086/525536]
  32. Kollef M.H.; Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis 2007,45(3)(Suppl. 3),S191-S195 [DOI: 10.1086/519470]
  33. Bassetti M.; Peghin M.; Castaldo N.; Giacobbe D.R.; The safety of treatment options for acute bacterial skin and skin structure infections. Expert Opin Drug Saf 2019,18(8),635-650 [DOI: 10.1080/14740338.2019.1621288]
  34. Jevitt L.A.; Smith A.J.; Williams P.P.; Raney P.M.; McGowan J.E.; Tenover F.C.; In vitro activities of Daptomycin, Linezolid, and Quinupristin-Dalfopristin against a challenge panel of Staphylococci and Enterococci, including vancomycin-intermediate staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Microb Drug Resist 2003,9(4),389-393 [DOI: 10.1089/107662903322762833]
  35. Sakoulas G.; Alder J.; Thauvin-Eliopoulos C.; Moellering R.C.; Eliopoulos G.M.; Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob Agents Chemother 2006,50(4),1581-1585 [DOI: 10.1128/AAC.50.4.1581-1585.2006]
  36. Arbeit R.D.; Maki D.; Tally F.P.; Campanaro E.; Eisenstein B.I.; The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 2004,38(12),1673-1681 [DOI: 10.1086/420818]
  37. Aikawa N.; Kusachi S.; Mikamo H.; Takesue Y.; Watanabe S.; Tanaka Y.; Morita A.; Tsumori K.; Kato Y.; Yoshinari T.; Efficacy and safety of intravenous daptomycin in Japanese patients with skin and soft tissue infections. J Infect Chemother 2013,19(3),447-455 [DOI: 10.1007/s10156-012-0501-9]
  38. Quinn D.K.; Stern T.A.; Linezolid and serotonin syndrome. Prim Care Companion J Clin Psychiatry 2009,11(6),353-356 [DOI: 10.4088/PCC.09r00853]
  39. Van Wart S.A.; Cirincione B.B.; Ludwig E.A.; Meagher A.K.; Korth-Bradley J.M.; Owen J.S.; Population pharmacokinetics of tigecycline in healthy volunteers. J Clin Pharmacol 2007,47(6),727-737 [DOI: 10.1177/0091270007300263]
  40. Murchison A.; Quinupristin���dalfopristin: A streptogramin antibiotic. Prim Care Update Ob Gyns 2002,9(5),176-177 [DOI: 10.1016/S1068-607X(02)00113-0]
  41. Eliopoulos G.M.; Eliopoulos G.M.; Quinupristin-dalfopristin and linezolid: Evidence and opinion. Clin Infect Dis 2003,36(4),473-481 [DOI: 10.1086/367662]
  42. Ma H.; Cheng J.; Peng L.; Gao Y.; Zhang G.; Luo Z.; Adjunctive rifampin for the treatment of Staphylococcus aureus bacteremia with deep infections: A meta-analysis. PLoS One 2020,15(3),e0230383 [DOI: 10.1371/journal.pone.0230383]
  43. Dryden M.; Zhang Y.; Wilson D.; Iaconis J.P.; Gonzalez J.; A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J Antimicrob Chemother 2016,71(12),3575-3584 [DOI: 10.1093/jac/dkw333]
  44. Corey G.R.; Wilcox M.; Talbot G.H.; Friedland H.D.; Baculik T.; Witherell G.W.; Critchley I.; Das A.F.; Thye D.; Integrated analysis of CANVAS 1 and 2: Phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin Infect Dis 2010,51(6),641-650 [DOI: 10.1086/655827]
  45. Blumenthal K.G.; Kuhlen J.L.; Weil A.A.; Varughese C.A.; Kubiak D.W.; Banerji A.; Shenoy E.S.; Adverse drug reactions associated with ceftaroline use: A 2-center retrospective cohort. J Allergy Clin Immunol Pract 2016,4(4),740-746 [DOI: 10.1016/j.jaip.2016.03.008]
  46. Smieja M.; Current indications for the use of clindamycin: A critical review. Can J Infect Dis 1998,9(1),22-28 [DOI: 10.1155/1998/538090]
  47. Geric B.; Rupnik M.; Gerding D.N.; Grabnar M.; Johnson S.; Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. J Med Microbiol 2004,53(9),887-894 [DOI: 10.1099/jmm.0.45610-0]
  48. Miller L.G.; Daum R.S.; Creech C.B.; Young D.; Downing M.D.; Eells S.J.; Pettibone S.; Hoagland R.J.; Chambers H.F.; Clindamycin versus trimethoprim-sulfamethoxazole for uncomplicated skin infections. N Engl J Med 2015,372(12),1093-1103 [DOI: 10.1056/NEJMoa1403789]
  49. Crellin E.; Mansfield K.E.; Leyrat C.; Nitsch D.; Douglas I.J.; Root A.; Williamson E.; Smeeth L.; Tomlinson L.A.; Trimethoprim use for urinary tract infection and risk of adverse outcomes in older patients: Cohort study. BMJ 2018,360,k341 [DOI: 10.1136/bmj.k341]
  50. Talan D.A.; Mower W.R.; Krishnadasan A.; Abrahamian F.M.; Lovecchio F.; Karras D.J.; Steele M.T.; Rothman R.E.; Hoagland R.; Moran G.J.; Trimethoprim���sulfamethoxazole versus placebo for uncomplicated skin abscess. N Engl J Med 2016,374(9),823-832 [DOI: 10.1056/NEJMoa1507476]
  51. Shorr A.F.; Lodise T.P.; Corey G.R.; De Anda C.; Fang E.; Das A.F.; Prokocimer P.; Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2015,59(2),864-871 [DOI: 10.1128/AAC.03688-14]
  52. Wilson A.P.R.; Comparative safety of teicoplanin and vancomycin. Int J Antimicrob Agents 1998,10(2),143-152 [DOI: 10.1016/S0924-8579(98)00025-9]
  53. Boucher H.W.; Wilcox M.; Talbot G.H.; Puttagunta S.; Das A.F.; Dunne M.W.; Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med 2014,370(23),2169-2179 [DOI: 10.1056/NEJMoa1310480]
  54. Bouza E.; Valerio M.; Soriano A.; Morata L.; Carus E.G.; Rodr��guez-Gonz��lez C.; Hidalgo-Tenorio M.C.; Plata A.; Mu��oz P.; Vena A.; Alvarez-Uria A.; Fern��ndez-Cruz A.; Nieto A.A.; Artero A.; Allende J.M.B.; Morell E.B.; Candel-Gonz��lez F.J.; Castelo L.; Cobo J.; del Carmen G��lvez Contreras M.; Fern��ndez R.G.; Horcajada J.P.; Guisado-Vasco P.; Losa J.E.; Herv��s R.; Iftimie S.M.; Mej��as M.E.J.; Jover F.; Ferreiro J.L.L.; Serrano A.B.L.; Malmierca E.; Masi�� M.; Sempere M.R.O.; Nieto A.R.; Rodriguez-Pardo D.; Alvarez S.J.R.; San Juan R.; Cepeda C.S.; Berrocal M.A.S.; Sobrino B.; Sorl�� L.; Dalbavancin in the treatment of different gram-positive infections: A real-life experience. Int J Antimicrob Agents 2018,51(4),571-577 [DOI: 10.1016/j.ijantimicag.2017.11.008]
  55. Stryjewski M.E.; Graham D.R.; Wilson S.E.; O���Riordan W.; Young D.; Lentnek A.; Ross D.P.; Fowler V.G.; Hopkins A.; Friedland H.D.; Barriere S.L.; Kitt M.M.; Corey G.R.; Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis 2008,46(11),1683-1693 [DOI: 10.1086/587896]
  56. Graham D.R.; Talan D.A.; Nichols R.L.; Lucasti C.; Corrado M.; Morgan N.; Fowler C.L.; Once-daily, high-dose levofloxacin versus ticarcillin-clavulanate alone or followed by amoxicillin-clavulanate for complicated skin and skin-structure infections: A randomized, open-label trial. Clin Infect Dis 2002,35(4),381-389 [DOI: 10.1086/341026]
  57. Nicodemo A.C.; Robledo J.A.; Jasovich A.; Neto W.; A multicentre, double-blind, randomised study comparing the efficacy and safety of oral levofloxacin versus ciprofloxacin in the treatment of uncomplicated skin and skin structure infections. Int J Clin Pract 1998,52(2),69-74 [DOI: 10.1111/j.1742-1241.1998.tb11567.x]
  58. Vick-Fragoso R.; Hern��ndez-Oliva G.; Cruz-Alc��zar J.; Am��bile-Cuevas C.F.; Arvis P.; Reimnitz P.; Bogner J.R.; Group S.S.; Efficacy and safety of sequential intravenous/oral moxifloxacin vs intravenous/oral amoxicillin/clavulanate for complicated skin and skin structure infections. Infection 2009,37(5),407-417 [DOI: 10.1007/s15010-009-8468-x]
  59. Smith K.; Leyden J.J.; Safety of doxycycline and minocycline: A systematic review. Clin Ther 2005,27(9),1329-1342 [DOI: 10.1016/j.clinthera.2005.09.005]
  60. Hershberger E.; Donabedian S.; Konstantinou K.; Zervos M.J.; Eliopoulos G.M.; Quinupristin-dalfopristin resistance in gram-positive bacteria: Mechanism of resistance and epidemiology. Clin Infect Dis 2004,38(1),92-98 [DOI: 10.1086/380125]
  61. Yamaoka T.; The bactericidal effects of anti-MRSA agents with rifampicin and sulfamethoxazole-trimethoprim against intracellular phagocytized MRSA. J Infect Chemother 2007,13(3),141-146 [DOI: 10.1007/s10156-007-0521-Z]
  62. Saravolatz L.D.; Pawlak J.; Johnson L.; Bonilla H.; Saravolatz L.D.; Fakih M.G.; Fugelli A.; Olsen W.M.; In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob Agents Chemother 2012,56(8),4478-4482 [DOI: 10.1128/AAC.00194-12]
  63. Nilsson A.C.; Janson H.; Wold H.; Fugelli A.; Andersson K.; H��kang��rd C.; Olsson P.; Olsen W.M.; LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob Agents Chemother 2015,59(1),145-151 [DOI: 10.1128/AAC.03513-14]
  64. Giuliani A.; Rinaldi A.C.; Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 2011,68(13),2255-2266 [DOI: 10.1007/s00018-011-0717-3]
  65. M��ndez-Samperio P.; Peptidomimetics as a new generation of antimicrobial agents: Current progress. Infect Drug Resist 2014,7,229-237 [DOI: 10.2147/IDR.S49229]
  66. Mercer D.K.; O���Neil D.A.; Innate inspiration: Antifungal peptides and other immunotherapeutics from the host immune response. Front Immunol 2020,11,2177-2205 [DOI: 10.3389/fimmu.2020.02177]
  67. Isaksson J.; Brandsdal B.O.; Engqvist M.; Flaten G.E.; Svendsen J.S.M.; Stensen W.; A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J Med Chem 2011,54(16),5786-5795 [DOI: 10.1021/jm200450h]
  68. Jiang Y.; Chen Y.; Song Z.; Tan Z.; Cheng J.; Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev 2021,170,261-280 [DOI: 10.1016/j.addr.2020.12.016]
  69. Saravolatz L.D.; Pawlak J.; Martin H.; Saravolatz S.; Johnson L.; Wold H.; Husbyn M.; Olsen W.M.; Postantibiotic effect and postantibiotic sub-MIC effect of LTX-109 and mupirocin on Staphylococcus aureus blood isolates. Lett Appl Microbiol 2017,65(5),410-413 [DOI: 10.1111/lam.12792]
  70. Koo H.B.; Seo J.; Antimicrobial peptides under clinical investigation. Pept Sci (Hoboken) 2019,111(5),e24122 [DOI: 10.1002/pep2.24122]
  71. Xu Z.Q.; Flavin M.T.; Flavin J.; Combating multidrug-resistant gram-negative bacterial infections. Expert Opin Investig Drugs 2014,23(2),163-182 [DOI: 10.1517/13543784.2014.848853]
  72. Rakesh K.P.; Marichannegowda M.H.; Srivastava S.; Chen X.; Long S.; Karthik C.S.; Mallu P.; Qin H.L.; Combating a master manipulator: Staphylococcus aureus immunomodulatory molecules as targets for combinatorial drug discovery. ACS Comb Sci 2018,20(12),681-693 [DOI: 10.1021/acscombsci.8b00088]
  73. Kowalski R.P.; Romanowski E.G.; Yates K.A.; Mah F.S.; An independent evaluation of a novel peptide mimetic, brilacidin (PMX30063), for ocular anti-infective. J Ocul Pharmacol Ther 2016,32(1),23-27 [DOI: 10.1089/jop.2015.0098]
  74. Li J.; Koh J.J.; Liu S.; Lakshminarayanan R.; Verma C.S.; Beuerman R.W.; Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci 2017,11,73-91 [DOI: 10.3389/fnins.2017.00073]
  75. Boucher H.W.; Talbot G.H.; Benjamin D.K.; Bradley J.; Guidos R.J.; Jones R.N.; Murray B.E.; Bonomo R.A.; Gilbert D.; 10 x ���20 Progress--development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America. Clin Infect Dis 2013,56(12),1685-1694 [DOI: 10.1093/cid/cit152]
  76. Wang M.; Odom T.; Cai J.; Challenges in the development of next-generation antibiotics: Opportunities of small molecules mimicking mode of action of host-defense peptides. Expert Opin Ther Pat 2020,30(5),303-305 [DOI: 10.1080/13543776.2020.1740683]
  77. Mercer D.K.; O���Neil D.A.; Peptides as the next generation of anti-infectives. Future Med Chem 2013,5(3),315-337 [DOI: 10.4155/fmc.12.213]
  78. Tillotson G.S.; Theriault N.; New and alternative approaches to tackling antibiotic resistance. F1000Prime Rep 2013,5,51-60 [DOI: 10.12703/P5-51]
  79. McCool R.; Gould I.M.; Eales J.; Barata T.; Arber M.; Fleetwood K.; Glanville J.; Kauf T.L.; Systematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA. BMC Infect Dis 2017,17(1),39 [DOI: 10.1186/s12879-016-2100-3]
  80. Jorgensen D.; Scott R.; O���Riordan W.; Tack K.; A randomized, double-blind study comparing single-dose and short-course brilacidin to daptomycin in the treatment of acute bacterial skin and skin structure infections (ABSSSI 25 European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) 2015,25-28
  81. Takahashi Y.; Igarashi M.; Destination of aminoglycoside antibiotics in the ���post-antibiotic era���. J Antibiot (Tokyo) 2018,71(1),4-14 [DOI: 10.1038/ja.2017.117]
  82. Singh G.S.; Carbohydrate-based antibiotics: Opportunities and challenges 2006,523-559
  83. Lakota E.A.; Sato N.; Koresawa T.; Kondo K.; Bhavnani S.M.; Ambrose P.G.; Rubino C.M.; Population pharmacokinetic analyses for arbekacin after administration of ME1100 inhalation solution. Antimicrob Agents Chemother 2019,63(8),e00267-19 [DOI: 10.1128/AAC.00267-19]
  84. Koulenti D.; Xu E.; Song A.; Sum Mok I.Y.; Karageorgopoulos D.E.; Armaganidis A.; Tsiodras S.; Lipman J.; Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms 2020,8(2),191-231 [DOI: 10.3390/microorganisms8020191]
  85. AB Naafs M.; The antimicrobial peptides: Ready for clinical trials. Biomed J Sci Tech Res 2018,7(4),6038-6042 [DOI: 10.26717/BJSTR.2018.07.001536]
  86. Appelbaum P.C.; 2012 and beyond: Potential for the start of a second pre-antibiotic era? J Antimicrob Chemother 2012,67(9),2062-2068 [DOI: 10.1093/jac/dks213]
  87. de Souza Mendes C.; de Souza Antunes A.; Pipeline of known chemical classes of antibiotics. Antibiotics (Basel) 2013,2(4),500-534 [DOI: 10.3390/antibiotics2040500]
  88. Peric M.; Jacobs M.R.; Appelbaum P.C.; Antianaerobic activity of a novel fluoroquinolone, WCK 771, compared to those of nine other agents. Antimicrob Agents Chemother 2004,48(8),3188-3192 [DOI: 10.1128/AAC.48.8.3188-3192.2004]
  89. Liapikou A.; Cill��niz C.; Torres A.; Investigational drugs in phase I and phase II clinical trials for the treatment of community-acquired pneumonia. Expert Opin Investig Drugs 2017,26(11),1239-1248 [DOI: 10.1080/13543784.2017.1385761]
  90. Jabes D.; The antibiotic RandD pipeline: An update. Curr Opin Microbiol 2011,14(5),564-569 [DOI: 10.1016/j.mib.2011.08.002]
  91. Lipsky B.A.; Tsai C.Y.; Chang L.W.; Chang Y.T.; Hsu M.C.; WITHDRAWN: Nemonoxacin treatment of patients with diabetic foot infection: A pilot study. J Microbiol Immunol Infect 2019,72,397-404 [DOI: 10.1016/j.jmii.2019.05.015]
  92. O���Riordan W.; Tiffany C.; Scangarella-Oman N.; Perry C.; Hossain M.; Ashton T.; Dumont E.; Efficacy, safety, and tolerability of Gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2017,61(6),e02095-16 [DOI: 10.1128/AAC.02095-16]
  93. Jeong J.W.; Jung S.J.; Lee H.H.; Kim Y.Z.; Park T.K.; Cho Y.L.; Chae S.E.; Baek S.Y.; Woo S.H.; Lee H.S.; Kwak J.H.; In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob Agents Chemother 2010,54(12),5359-5362 [DOI: 10.1128/AAC.00723-10]
  94. Vuong C.; Yeh A.J.; Cheung G.Y.C.; Otto M.; Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 2016,25(1),73-93 [DOI: 10.1517/13543784.2016.1109077]
  95. Cho Y.S.; Lim H.S.; Lee S.H.; Cho Y.L.; Nam H.; Bae K.S.; Pharmacokinetics, pharmacodynamics, and tolerability of single-dose oral LCB01-0371, a novel oxazolidinone with broad-spectrum activity, in healthy volunteers. ntimicrob. Antimicrob Agents Chemother 2018,62(7),e00451-18 [DOI: 10.1128/AAC.00451-18]
  96. Carvalhaes C.G.; Duncan L.R.; Wang W.; Sader H.S.; In vitro activity and potency of the novel Oxazolidinone Contezolid (MRX-I) tested against Gram-positive clinical isolates from US and Europe. Antimicrob Agents Chemother 2020,64(11),e01195-20 [DOI: 10.1128/AAC.01195-20]
  97. Li Y.G.; Wang J.X.; Zhang G.N.; Zhu M.; You X.F.; Hu X.X.; Zhang F.; Wang Y.C.; Antibacterial activity and structure��� activity relationship of a series of newly synthesized Pleuromutilin derivatives. Chem Biodivers 2019,16(2),e1800560 [DOI: 10.1002/cbdv.201800560]
  98. Pucci M.J.; Bush K.; Investigational antimicrobial agents of 2013. Clin Microbiol Rev 2013,26(4),792-821 [DOI: 10.1128/CMR.00033-13]
  99. Paukner S.; Riedl R.; Pleuromutilins: Potent drugs for resistant bugs���mode of action and resistance. Cold Spring Harb Perspect Med 2017,7(1),a027110 [DOI: 10.1101/cshperspect.a027110]
  100. Jones J.A.; Virga K.G.; Gumina G.; Hevener K.E.; Recent advances in the rational design and optimization of antibacterial agents. MedChemComm 2016,7(9),1694-1715 [DOI: 10.1039/C6MD00232C]
  101. Giacobbe D.R.; De Rosa F.G.; Del Bono V.; Grossi P.A.; Pea F.; Petrosillo N.; Rossolini G.M.; Tascini C.; Tumbarello M.; Viale P.; Bassetti M.; Ceftobiprole: Drug evaluation and place in therapy. Expert Rev Anti Infect Ther 2019,17(9),689-698 [DOI: 10.1080/14787210.2019.1667229]
  102. Parkes A.L.; Yule I.A.; Hybrid antibiotics ��� clinical progress and novel designs. Expert Opin Drug Discov 2016,11(7),665-680 [DOI: 10.1080/17460441.2016.1187597]
  103. Blais J.; Lewis S.R.; Krause K.M.; Benton B.M.; Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob Agents Chemother 2012,56(3),1584-1587 [DOI: 10.1128/AAC.05532-11]
  104. Leuthner K.D.; Vidaillac C.; Cheung C.M.; Rybak M.J.; In vitro activity of the new multivalent glycopeptide-cephalosporin antibiotic TD-1792 against vancomycin-nonsusceptible Staphylococcus isolates. Antimicrob Agents Chemother 2010,54(9),3799-3803 [DOI: 10.1128/AAC.00452-10]
  105. Hegde S.S.; Okusanya O.O.; Skinner R.; Shaw J.P.; Obedencio G.; Ambrose P.G.; Blais J.; Bhavnani S.M.; Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model. Antimicrob Agents Chemother 2012,56(3),1578-1583 [DOI: 10.1128/AAC.05382-11]
  106. Itoh H.; Tokumoto K.; Kaji T.; Paudel A.; Panthee S.; Hamamoto H.; Sekimizu K.; Inoue M.; Total synthesis and biological mode of action of WAP-8294A2: A menaquinone-targeting antibiotic. J Org Chem 2018,83(13),6924-6935 [DOI: 10.1021/acs.joc.7b02318]
  107. Kato A.; Nakaya S.; Ohashi Y.; Hirata H.; Fujii K.; Harada K.; WAP-8294A2, a novel anti-MRSA antibiotic produced by Lysobacter sp. J Am Chem Soc 1997,119(28),6680-6681 [DOI: 10.1021/ja970895o]
  108. Kato A.; Hirata H.; Ohashi Y.; Fujii K.; Mori K.; Harada K.; A new anti-MRSA antibiotic complex, WAP-8294A II. Structure characterization of minor components by ESI LCMS and MS/MS. J Antibiot (Tokyo) 2011,64(5),373-379 [DOI: 10.1038/ja.2011.9]
  109. Ling J.; Zhu R.; Laborda P.; Jiang T.; Jia Y.; Zhao Y.; Liu F.; LbDSF, the Lysobacter brunescens quorum sensing system diffusible signalling factor, regulates anti-xanthomonas XSAC biosynthesis, colony morphology, and surface motility. Front Microbiol 2019,10,1230-1244 [DOI: 10.3389/fmicb.2019.01230]
  110. Hafkin B.; Kaplan N.; Murphy B.; Efficacy and safety of AFN-1252, the first Staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob Agents Chemother 2016,60(3),1695-1701 [DOI: 10.1128/AAC.01741-15]
  111. Butler M.S.; Paterson D.L.; Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo) 2020,73(6),329-364 [DOI: 10.1038/s41429-020-0291-8]
  112. Fisher C.R.; Schmidt-Malan S.M.; Ma Z.; Yuan Y.; He S.; Patel R.; In vitro activity of TNP-2092 against periprosthetic joint infection���associated staphylococci. Diagn Microbiol Infect Dis 2020,97(3),115040-115065 [DOI: 10.1016/j.diagmicrobio.2020.115040]
  113. Motley M.P.; Banerjee K.; Fries B.C.; Monoclonal antibody-based therapies for bacterial infections. Curr Opin Infect Dis 2019,32(3),210-216 [DOI: 10.1097/QCO.0000000000000539]
  114. Peck M.; Rothenberg M.E.; Deng R.; Lewin-Koh N.; She G.; Kamath A.V.; Carrasco-Triguero M.; Saad O.; Castro A.; Teufel L.; Dickerson D.S.; Leonardelli M.; Tavel J.A.; A phase 1, randomized, single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of DSTA4637S, an anti-Staphylococcus aureus thiomab antibody-antibiotic conjugate, in healthy volunteers. Antimicrob Agents Chemother 2019,63(6),e02588-18 [DOI: 10.1128/AAC.02588-18]
  115. Fernandes P.; Pereira D.; Efforts to support the development of fusidic acid in the United States. Clin Infect Dis 2011,52(7)(Suppl. 7),S542-S546 [DOI: 10.1093/cid/cir170]
  116. Shukla M.; Soni I.; Dasgupta A.; Chopra S.; Drugs under preclinical and clinical testing for the treatment of infections caused due to Staphylococcus aureus. An update, in infectious diseases and your health 2018,239-255
  117. Biedenbach D.J.; Rhomberg P.R.; Mendes R.E.; Jones R.N.; Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102). Diagn Microbiol Infect Dis 2010,66(3),301-307 [DOI: 10.1016/j.diagmicrobio.2009.10.014]
  118. Noeske J.; Huang J.; Olivier N.B.; Giacobbe R.A.; Zambrowski M.; Cate J.H.D.; Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob Agents Chemother 2014,58(9),5269-5279 [DOI: 10.1128/AAC.03389-14]
  119. Liapikou A.; Torres A.; Emerging drugs on methicillin-resistant Staphylococcus aureus. Expert Opin Emerg Drugs 2013,18(3),291-305 [DOI: 10.1517/14728214.2013.813480]
  120. Pankuch G.A.; Lin G.; Clark C.; Appelbaum P.C.; Time-kill activity of the streptogramin NXL 103 against gram-positive and -negative bacteria. Antimicrob Agents Chemother 2011,55(4),1787-1791 [DOI: 10.1128/AAC.01159-10]
  121. Politano A.D.; Sawyer R.G.; NXL-103, a combination of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA. Curr Opin Investig Drugs 2010,11(2),225-236 [PMID: 20112172]
  122. Lepak A.J.; Parhi A.; Madison M.; Marchillo K.; VanHecker J.; Andes D.R.; In vivo pharmacodynamic evaluation of an FtsZ Inhibitor, TXA-709, and its active metabolite, TXA-707, in a murine neutropenic thigh infection model. Antimicrob Agents Chemother 2015,59(10),6568-6574 [DOI: 10.1128/AAC.01464-15]
  123. Theuretzbacher U.; Bush K.; Harbarth S.; Paul M.; Rex J.H.; Tacconelli E.; Thwaites G.E.; Critical analysis of antibacterial agents in clinical development. Nat Rev Microbiol 2020,18(5),286-298 [DOI: 10.1038/s41579-020-0340-0]
  124. Stephens L.J.; Werrett M.V.; Sedgwick A.C.; Bull S.D.; Andrews P.C.; Antimicrobial innovation: A current update and perspective on the antibiotic drug development pipeline. Future Med Chem 2020,12(22),2035-2065 [DOI: 10.4155/fmc-2020-0225]
  125. Kaul M.; Mark L.; Zhang Y.; Parhi A.K.; Lyu Y.L.; Pawlak J.; Saravolatz S.; Saravolatz L.D.; Weinstein M.P.; LaVoie E.J.; Pilch D.S.; TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2015,59(8),4845-4855 [DOI: 10.1128/AAC.00708-15]
  126. Naderer O.J.; Dumont E.; Zhu J.; Kurtinecz M.; Jones L.S.; Single-dose safety, tolerability, and pharmacokinetics of the antibiotic GSK1322322, a novel peptide deformylase inhibitor. Antimicrob Agents Chemother 2013,57(5),2005-2009 [DOI: 10.1128/AAC.01779-12]
  127. Corey R.; Naderer O.J.; O���Riordan W.D.; Dumont E.; Jones L.S.; Kurtinecz M.; Zhu J.Z.; Safety, tolerability, and efficacy of GSK1322322 in the treatment of acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2014,58(11),6518-6527 [DOI: 10.1128/AAC.03360-14]
  128. Alm R.A.; Lahiri S.D.; Narrow-spectrum antibacterial agents���benefits and challenges. Antibiotics (Basel) 2020,9(7),418-426 [DOI: 10.3390/antibiotics9070418]
  129. Page J.E.; Walker S.; Natural products that target the cell envelope. Curr Opin Microbiol 2021,61,16-24 [DOI: 10.1016/j.mib.2021.02.001]
  130. Traczewski M.M.; Ambler J.E.; Schuch R.; Determination of MIC quality control parameters for Exebacase, a novel lysin with anti-staphylococcal activity. J Clin Microbiol 2021,59(7),e03117-20 [DOI: 10.1128/JCM.03117-20]
  131. Watson A.; Oh J.T.; Sauve K.; Bradford P.A.; Cassino C.; Schuch R.; Antimicrobial activity of exebacase (lysin CF-301) against the most common causes of infective endocarditis. Antimicrob Agents Chemother 2019,63(10),e01078-19 [DOI: 10.1128/AAC.01078-19]
  132. Kim N.H.; Park W.B.; Cho J.E.; Choi Y.J.; Choi S.J.; Jun S.Y.; Kang C.K.; Song K.H.; Choe P.G.; Bang J.H.; Kim E.S.; Park S.W.; Kim N.J.; Oh M.; Kim H.B.; Effects of phage endolysin SAL200 combined with antibiotics on Staphylococcus aureus infection. Antimicrob Agents Chemother 2018,62(10),e00731-18 [DOI: 10.1128/AAC.00731-18]
  133. Caflisch K.M.; Patel R.; Implications of bacteriophage-and bacteriophage component-based therapies for the clinical microbiology laboratory. J Clin Microbiol 2019,57(8),e00229-19 [DOI: 10.1128/JCM.00229-19]
  134. Jun S.Y.; Jung G.M.; Yoon S.J.; Youm S.Y.; Han H.Y.; Lee J.H.; Kang S.H.; Pharmacokinetics of the phage endolysin-based candidate drug 200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol 2016,43(10),1013-1016 [DOI: 10.1111/1440-1681.12613]
  135. Channabasappa S.; Chikkamadaiah R.; Durgaiah M.; Kumar S.; Ramesh K.; Sreekanthan A.; Sriram B.; Efficacy of chimeric ectolysin P128 in drug-resistant Staphylococcus aureus bacteraemia in mice. J Antimicrob Chemother 2018,73(12),3398-3404 [DOI: 10.1093/jac/dky365]
  136. Safety and efficacy of an antibacterial protein molecule applied topically to the nostrils of volunteers and patients. ClinicalTrials.gov Available From: https://clinicaltrials.gov/ct2/show/NCT01746654
  137. Bagnoli F.; Staphylococcus aureus toxin antibodies: Good companions of antibiotics and vaccines. Virulence 2017,8(7),1037-1042 [DOI: 10.1080/21505594.2017.1295205]
  138. Varshney A.K.; Kuzmicheva G.A.; Lin J.; Sunley K.M.; Bowling R.A.; Kwan T.Y.; Mays H.R.; Rambhadran A.; Zhang Y.; Martin R.L.; Cavalier M.C.; Simard J.; Shivaswamy S.; A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One 2018,13(1),e0190537 [DOI: 10.1371/journal.pone.0190537]
  139. Falc�� V.; Burgos J.; Papiol E.; Ferrer R.; Almirante B.; Investigational drugs in phase I and phase II clincial trials for the treatment of hospital-acquired pneumonia. Expert Opin Investig Drugs 2016,25(6),653-665 [DOI: 10.1517/13543784.2016.1168803]
  140. Wang-Lin S.; Balthasar J.; Pharmacokinetic and pharmacodynamic considerations for the use of monoclonal antibodies in the treatment of bacterial infections. Antibodies (Basel) 2018,7(1),5-25 [DOI: 10.3390/antib7010005]
  141. Vignon P.; Laterre P.F.; Daix T.; Fran��ois B.; New agents in development for sepsis: Any reason for hope? Drugs 2020,80(17),1751-1761 [DOI: 10.1007/s40265-020-01402-z]
  142. Tabor D.E.; Yu L.; Mok H.; Tkaczyk C.; Sellman B.R.; Wu Y.; Oganesyan V.; Slidel T.; Jafri H.; McCarthy M.; Bradford P.; Esser M.T.; Staphylococcus aureus alpha-toxin is conserved among diverse hospital respiratory isolates collected from a global surveillance study and is neutralized by monoclonal antibody MEDI4893. Antimicrob Agents Chemother 2016,60(9),5312-5321 [DOI: 10.1128/AAC.00357-16]
  143. Fran��ois B.; Jafri H.S.; Chastre J.; S��nchez-Garc��a M.; Eggimann P.; Dequin P.F.; Huberlant V.; Vi��a Soria L.; Boulain T.; Bretonni��re C.; Pugin J.; Trenado J.; Hernandez Padilla A.C.; Ali O.; Shoemaker K.; Ren P.; Coenjaerts F.E.; Ruzin A.; Barraud O.; Timbermont L.; Lammens C.; Pierre V.; Wu Y.; Vignaud J.; Colbert S.; Bellamy T.; Esser M.T.; Dubovsky F.; Bonten M.J.; Goossens H.; Laterre P.F.; Chochrad D.; Dive A.; Foret F.; Simon M.; Spapen H.; Creteur J.; Bouckaert Y.; Biston P.; Bourgeois M.; Novacek M.; Vymazal T.; Svoboda P.; Pachl J.; Sramek V.; Hanauer M.; Hruby T.; Balik M.; Suchy T.; Lepape A.; Argaud L.; Dailler F.; Desachy A.; Guitton C.; Mercat A.; Meziani F.; Navellou J-C.; Robert R.; Souweine B.; Tadie J-M.; Maamar A.; Annane D.; Tamion F.; Gros A.; Nseir S.; Schwebel C.; Francony G.; Lefrant J-Y.; Schneider F.; Gr��ndling M.; Motsch J.; Reill L.; Rolfes C.; Welte T.; Cornely O.; Bloos F.; Deja M.; Schmidt K.; Wappler F.; Meier-Hellmann A.; Komnos A.; Bekos V.; Koulouras V.; Soultati I.; Baltopoulos G.; Filntisis G.; Zakynthinos E.; Zakynthinos S.; Pnevmatikos I.; Kr��mer I.; Szentkereszty Z.; Sarkany A.; Marjanek Z.; Moura P.; Pintado Delgado M.C.; Montejo Gonz��lez J.C.; Ramirez P.; Torres Marti A.; Valia J.C.; Lorente J.; Loza Vazquez A.; De Pablo Sanchez R.; Escudero D.; Ferrer Roca R.; Pagani J-L.; Maggiorini M.; Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): A multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect Dis 2021,21(9),1313-1323 [DOI: 10.1016/S1473-3099(20)30995-6]
  144. Jacobs M.R.; Appelbaum P.C.; Nadifloxacin: A quinolone for topical treatment of skin infections and potential for systemic use of its active isomer, WCK 771. Expert Opin Pharmacother 2006,7(14),1957-1966 [DOI: 10.1517/14656566.7.14.1957]
  145. Lautre C.; Sharma S.; Sahu J.K.; Chemistry, biological properties and analytical methods of Levonadifloxacin:A review. Crit Rev Anal Chem 2020,50,1-9 [PMID: 33307757]
  146. Baliga S.; Mamtora D.K.; Gupta V.; Shanmugam P.; Biswas S.; Mukherjee D.N.; Shenoy S.; Assessment of antibacterial activity of levonadifloxacin against contemporary gram-positive clinical isolates collected from various Indian hospitals using disk-diffusion assay. Indian J Med Microbiol 2020,38(3-4),307-312 [DOI: 10.4103/ijmm.IJMM_20_307]
  147. Veeraraghavan B.; Bakthavatchalam Y.D.; Manesh A.; Lal B.; Swaminathan S.; Ansari A.; Subbareddy K.; Rangappa P.; Choudhuri A.H.; Nagvekar V.; Mehta Y.; Appalaraju B.; Baveja S.; Baliga S.; Shenoy S.; Bhardwaj R.; Kongre V.; Dattatraya G.S.; Verma B.; Mukherjee D.N.; Gupta S.; Shanmugam P.; Iravane J.; Mishra S.R.; Barman P.; Chopra S.; Hariharan M.; Surpam R.; Pratap R.; Turbadkar D.; Taklikar S.; India-discovered levonadifloxacin and alalevonadifloxacin: A review on susceptibility testing methods, CLSI quality control and breakpoints along with a brief account of their emerging therapeutic profile as a novel standard-of-care. Indian J Med Microbiol 2023,41(3),71-80 [DOI: 10.1016/j.ijmmb.2022.11.005]
  148. Rodvold K.A.; Gotfried M.H.; Chugh R.; Gupta M.; Yeole R.; Patel A.; Bhatia A.; Intrapulmonary pharmacokinetics of Levonadifloxacin following oral administration of Alalevonadifloxacin to healthy adult subjects. Antimicrob Agents Chemother 2018,62(3),e02297-17 [DOI: 10.1128/AAC.02297-17]
  149. Jones T.; Johnson S.; DiMondi V.P.; Wilson D.T.; Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Infect Drug Resist 2016,9,119-128 [DOI: 10.2147/IDR.S105620]
  150. Covington P.; Davenport J.M.; Andrae D.; O���Riordan W.; Liverman L.; McIntyre G.; Almenoff J.; Randomized, double-blind, phase II, multicenter study evaluating the safety/tolerability and efficacy of JNJ-Q2, a novel fluoroquinolone, compared with linezolid for treatment of acute bacterial skin and skin structure infection. Antimicrob Agents Chemother 2011,55(12),5790-5797 [DOI: 10.1128/AAC.05044-11]
  151. Chang L-W.; Hsu M-C.; Zhang Y-Y.; Staphylococcus and Streptococcus 2019,1-95
  152. Kocsis B.; Domokos J.; Szabo D.; Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann Clin Microbiol Antimicrob 2016,15(1),34-42 [DOI: 10.1186/s12941-016-0150-4]
  153. Cheng S.L.; Wu R.G.; Chuang Y.C.; Perng W.C.; Tsao S.M.; Chang Y.T.; Chang L.W.; Hsu M.C.; Integrated safety summary of phase II and III studies comparing oral nemonoxacin and levofloxacin in community-acquired pneumonia. J Microbiol Immunol Infect 2019,52(5),743-751 [DOI: 10.1016/j.jmii.2018.11.006]
  154. Lai C.C.; Lee K.Y.; Lin S.W.; Chen Y.H.; Kuo H.Y.; Hung C.C.; Hsueh P.R.; Nemonoxacin (TG-873870) for treatment of community-acquired pneumonia. Expert Rev Anti Infect Ther 2014,12(4),401-417 [DOI: 10.1586/14787210.2014.894881]
  155. Adam H.J.; Laing N.M.; King C.R.; Lulashnyk B.; Hoban D.J.; Zhanel G.G.; In vitro activity of nemonoxacin, a novel non fluorinated quinolone, against 2,440 clinical isolates. Antimicrob Agents Chemother 2009,53(11),4915-4920 [DOI: 10.1128/AAC.00078-09]
  156. Liu Y.; Zhang Y.; Wu J.; Zhu D.; Sun S.; Zhao L.; Wang X.; Liu H.; Ren Z.; Wang C.; Xiu Q.; Xiao Z.; Cao Z.; Cui S.; Yang H.; Liang Y.; Chen P.; Lv Y.; Hu C.; Lv X.; Liu S.; Kuang J.; Li J.; Wang D.; Chang L.; A randomized, double-blind, multicenter Phase II study comparing the efficacy and safety of oral nemonoxacin with oral levofloxacin in the treatment of community-acquired pneumonia. J Microbiol Immunol Infect 2017,50(6),811-820 [DOI: 10.1016/j.jmii.2015.09.005]
  157. Aoki H.; Ke L.; Poppe S.M.; Poel T.J.; Weaver E.A.; Gadwood R.C.; Thomas R.C.; Shinabarger D.L.; Ganoza M.C.; Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob Agents Chemother 2002,46(4),1080-1085 [DOI: 10.1128/AAC.46.4.1080-1085.2002]
  158. Cho Y.S.; Lim H.S.; Cho Y.L.; Nam H.S.; Bae K.S.; Multiple-dose safety, tolerability, pharmacokinetics, and pharmacodynamics of oral LCB01-0371 in healthy male volunteers. Clin Ther 2018,40(12),2050-2064 [DOI: 10.1016/j.clinthera.2018.10.007]
  159. Egorova A.; Jackson M.; Gavrilyuk V.; Makarov V.; Pipeline of anti Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021,41(4),2350-2387 [DOI: 10.1002/med.21798]
  160. Shetye G.S.; Franzblau S.G.; Cho S.; New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020,220(4),68-97 [DOI: 10.1016/j.trsl.2020.03.007]
  161. Cho Y.S.; Lim H.S.; Han S.; Yoon S.K.; Kim H.; Cho Y.L.; Nam H.S.; Bae K.S.; Single-dose intravenous safety, tolerability, and pharmacokinetics and absolute bioavailability of LCB01-0371. Clin Ther 2019,41(1),92-106 [DOI: 10.1016/j.clinthera.2018.11.009]
  162. Cho Y.L.; Jang J.; Development of delpazolid for the treatment of tuberculosis. Appl Sci (Basel) 2020,10(7),2211 [DOI: 10.3390/app10072211]
  163. Gao X.; Zhao W.; Huo F.; Jiang G.; Dong L.; Zhao L.; Wang F.; Yu X.; Huang H.; In vitro efficacy comparison of Linezolid, Tedizolid, Sutezolid and Delpazolid against rapid growing Mycobacteria isolated in Beijing, China. BioRxiv 2020
  164. Kaku N.; Morinaga Y.; Takeda K.; Kosai K.; Uno N.; Hasegawa H.; Miyazaki T.; Izumikawa K.; Mukae H.; Yanagihara K.; Efficacy and pharmacokinetics of ME1100, a novel optimized formulation of arbekacin for inhalation, compared with amikacin in a murine model of ventilator-associated pneumonia caused by Pseudomonas aeruginosa. J Antimicrob Chemother 2017,72(4),1123-1128 [PMID: 27999047]
  165. Bhagwat S.S.; Nandanwar M.; Kansagara A.; Patel A.; Takalkar S.; Chavan R.; Hariharan P.; Yeole R.; Deshpande P.; Bhavsar S.; Bhatia A.; Ahdal J.; Jain R.; Patel M.; Levonadifloxacin, a novel broad-spectrum anti-MRSA benzoquinolizine quinolone agent: Review of current evidence. Drug Des Devel Ther 2019,13,4351-4365 [DOI: 10.2147/DDDT.S229882]
  166. Wu X.; Zhang J.; Guo B.; Zhang Y.; Yu J.; Cao G.; Chen Y.; Zhu D.; Ye X.; Wu J.; Shi Y.; Chang L.; Chang Y.; Tsai C.; Pharmacokinetics and pharmacodynamics of multiple-dose intravenous nemonoxacin in healthy Chinese volunteers. Antimicrob Agents Chemother 2015,59(3),1446-1454 [DOI: 10.1128/AAC.04039-14]
  167. Negash K.; Andonian C.; Felgate C.; Chen C.; Goljer I.; Squillaci B.; Nguyen D.; Pirhalla J.; Lev M.; Schubert E.; Tiffany C.; Hossain M.; Ho M.; The metabolism and disposition of GSK2140944 in healthy human subjects. Xenobiotica 2016,46(8),683-702 [DOI: 10.3109/00498254.2015.1112933]
  168. Choi Y.; Lee S.W.; Kim A.; Jang K.; Nam H.; Cho Y.L.; Yu K.S.; Jang I.J.; Chung J.Y.; Safety, tolerability and pharmacokinetics of 21 day multiple oral administration of a new oxazolidinone antibiotic, LCB01-0371, in healthy male subjects. J Antimicrob Chemother 2018,73(1),183-190 [DOI: 10.1093/jac/dkx367]
  169. Eckburg P.B.; Ge Y.; Hafkin B.; Single-and multiple-dose study to determine the safety, tolerability, pharmacokinetics, and food effect of oral MRX-I versus Linezolid in healthy adult subjects. Antimicrob Agents Chemother 2017,61(4),e02181-16 [DOI: 10.1128/AAC.02181-16]
  170. Yang D.; Chen L.; Lai L.; Ren M.; Zhang G.; Pan Z.; Fang B.; Research on pharmacokinetics and bioavailability of pleuromutilin derivative BC-7013 in chickens. Zhongguo Nongye Daxue Xuebao 2015,36(4),26-31
  171. Zeitlinger M.; Schwameis R.; Burian A.; Burian B.; Matzneller P.; M��ller M.; Wicha W.W.; Strickmann D.B.; Prince W.; Simultaneous assessment of the pharmacokinetics of a pleuromutilin, lefamulin, in plasma, soft tissues and pulmonary epithelial lining fluid. J Antimicrob Chemother 2016,71(4),1022-1026 [DOI: 10.1093/jac/dkv442]
  172. Schmitt-Hoffmann A.; Roos B.; Schleimer M.; Sauer J.; Man A.; Nashed N.; Brown T.; Perez A.; Weidekamm E.; Kov��cs P.; Single-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob Agents Chemother 2004,48(7),2570-2575 [DOI: 10.1128/AAC.48.7.2570-2575.2004]
  173. Stryjewski M.E.; Potgieter P.D.; Li Y.P.; Barriere S.L.; Churukian A.; Kingsley J.; Corey G.R.; TD-1792 versus vancomycin for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 2012,56(11),5476-5483 [DOI: 10.1128/AAC.00712-12]
  174. Kaplan N.; Hafkin B. 2014.; Preclinical pharmacokinetics and efficacy of Debio 1450 (Previously AFN-1720), a prodrug of the Staphylococcocal-specific Antibiotic Debio 1452 (Previously AFN-1252). In: 24 European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). 2014
  175. Morgan A.; Cofer C.; Stevens D.L.; Iclaprim: A novel dihydrofolate reductase inhibitor for skin and soft tissue infections. Future Microbiol 2009,4(2),131-144 [DOI: 10.2217/17460913.4.2.131]
  176. Weiss W.; Pulse M.; Nguyen P.; Ma Z.; In vivo efficacy of dual-action molecule TNP-2092 in mouse H. pylori infection model as compared to triple therapies and distribution within the gastric mucosal layer. In: American Society of Microbiology General Meeting, Poster. 2016, pp. 460
  177. Zhou C.; Lehar S.; Gutierrez J.; Rosenberger C.M.; Ljumanovic N.; Dinoso J.; Koppada N.; Hong K.; Baruch A.; Carrasco-Triguero M.; Saad O.; Mariathasan S.; Kamath A.V.; Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMAB��� antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs 2016,8(8),1612-1619 [DOI: 10.1080/19420862.2016.1229722]
  178. Still J.G.; Clark K.; Degenhardt T.P.; Scott D.; Fernandes P.; Gutierrez M.J.; Pharmacokinetics and safety of single, multiple, and loading doses of fusidic acid in healthy subjects. Clin Infect Dis 2011,52(7)(Suppl. 7),S504-S512 [DOI: 10.1093/cid/cir174]
  179. Pankuch G.A.; Hoellman D.; Bryskier A.; Lowther J.; Appelbaum P.C.; Effects of various media on the activity of NXL103 (formerly XRP 2868), a new oral streptogramin, against Haemophilus influenzae. Antimicrob Agents Chemother 2006,50(11),3914-3916 [DOI: 10.1128/AAC.00587-06]
  180. Andes D.; Craig W.A.; Pharmacodynamics of a new streptogramin, XRP 2868, in murine thigh and lung infection models. Antimicrob Agents Chemother 2006,50(1),243-249 [DOI: 10.1128/AAC.50.1.243-249.2006]
  181. Naderer O.J.; Jones L.S.; Zhu J.; Kurtinecz M.; Dumont E.; Safety, tolerability, and pharmacokinetics of oral and intravenous administration of GSK1322322, a peptide deformylase inhibitor. J Clin Pharmacol 2013,53(11),1168-1176 [DOI: 10.1002/jcph.150]
  182. Cassino C.; Murphy M.; Boyle J.; Rotolo J.; Wittekind M.; Results of the first in human study of lysin CF-301 evaluating the safety, tolerability and pharmacokinetic profile in healthy volunteers proceedings of the 26 European congress of clinical microbiology and infectious diseases, Amsterdam, The Netherlands 2016 [DOI: 10.26226/morressier.56ebbf52d462b80296c97eca]
  183. Jun S.Y.; Jang I.J.; Yoon S.; Jang K.; Yu K.S.; Cho J.Y.; Seong M.W.; Jung G.M.; Yoon S.J.; Kang S.H.; Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother 2017,61(6),e02629-16 [DOI: 10.1128/AAC.02629-16]
  184. Hariharan S.; Keelara S.; Paul V.D.; Sriram B.; Vipra A.A.; Balganesh T.; Drug discovery targeting drug-resistant bacteria 2020,301-359
  185. Rupp M.E.; Stecher M.; Mckinnon J.; Jung N.; Huynh T.; Pharmacokinetics of a novel monoclonal antibody targeting Staphylococcal Protein A in patients hospitalized with S. aureus bacteremia. Open Forum Infect Dis 2016,3(1)(Suppl. 1),1985 [DOI: 10.1093/ofid/ofw172.1533]
  186. Fran��ois B.; Mercier E.; Gonzalez C.; Asehnoune K.; Nseir S.; Fiancette M.; Desachy A.; Plantef��ve G.; Meziani F.; de Lame P.A.; Laterre P.F.; Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: First-in-human trial. Intensive Care Med 2018,44(11),1787-1796 [DOI: 10.1007/s00134-018-5229-2]
  187. Yu X-Q.; Robbie G.J.; Wu Y.; Esser M.T.; Jensen K.; Schwartz H.I.; Bellamy T.; Hernandez-Illas M.; Jafri H.S.; Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob Agents Chemother 2016,61(1),1020-1036 [PMID: 27795368]
  188. Reddy D.S.; Sinha A.; Kumar A.; Saini V.K.; Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch Pharm (Weinheim) 2022,355(11),2200214 [DOI: 10.1002/ardp.202200214]
  189. Bae I.G.; Tonthat G.T.; Stryjewski M.E.; Rude T.H.; Reilly L.F.; Barriere S.L.; Genter F.C.; Corey G.R.; Fowler V.G.; Presence of genes encoding the panton-valentine leukocidin exotoxin is not the primary determinant of outcome in patients with complicated skin and skin structure infections due to methicillin-resistant Staphylococcus aureus: Results of a multinational trial. J Clin Microbiol 2009,47(12),3952-3957 [DOI: 10.1128/JCM.01643-09]
  190. Wang W.; Voss K.M.; Liu J.; Gordeev M.F.; Nonclinical evaluation of antibacterial oxazolidinones Contezolid and Contezolid Acefosamil with low serotonergic neurotoxicity. Chem Res Toxicol 2021,34(5),1348-1354 [DOI: 10.1021/acs.chemrestox.0c00524]
  191. Wu J.; Cao G.; Wu H.; Chen Y.; Guo B.; Wu X.; Yu J.; Ni K.; Qian J.; Wang L.; Wu J.; Wang Y.; Yuan H.; Zhang J.; Xi Y.; Evaluation of the effect of Contezolid (MRX-I) on the corrected QT interval in a randomized, double-blind, placebo-and positive-controlled crossover study in healthy Chinese volunteers. Antimicrob Agents Chemother 2020,64(6),e02158-19 [DOI: 10.1128/AAC.02158-19]
  192. Michalska K.; Gruba E.; Bocian W.; Cielecka-Piontek J.; Enantioselective recognition of radezolid by cyclodextrin modified capillary electrokinetic chromatography and electronic circular dichroism. J Pharm Biomed Anal 2017,139,98-108 [DOI: 10.1016/j.jpba.2017.01.041]
  193. Kaur M.; Rai J.; Randhawa G.K.; Recent advances in antibacterial drugs. Int J Appl Basic Med Res 2013,3(1),3-10 [DOI: 10.4103/2229-516X.112229]
  194. Silverberg N.; Block S.; Uncomplicated skin and skin structure infections in children: Diagnosis and current treatment options in the United States. Clin Pediatr (Phila) 2008,47(3),211-219 [DOI: 10.1177/0009922807307186]
  195. Eyal Z.; Matzov D.; Krupkin M.; Paukner S.; Riedl R.; Rozenberg H.; Zimmerman E.; Bashan A.; Yonath A.; A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci Rep 2016,6(1),39004 [DOI: 10.1038/srep39004]
  196. Goethe O.; Heuer A.; Ma X.; Wang Z.; Herzon S.B.; Antibacterial properties and clinical potential of pleuromutilins. Nat Prod Rep 2019,36(1),220-247 [DOI: 10.1039/C8NP00042E]
  197. Yi Y.; Fu Y.; Dong P.; Qin W.; Liu Y.; Liang J.; Shang R.; Synthesis and biological activity evaluation of novel heterocyclic pleuromutilin derivatives. Molecules 2017,22(6),996 [DOI: 10.3390/molecules22060996]
  198. Li Y.G.; Wang J.X.; Zhang G.N.; Zhu M.; You X.F.; Wang Y.C.; Zhang F.; Design, synthesis, and biological activity evaluation of a series of pleuromutilin derivatives with novel C14 side chains. Bioorg Med Chem Lett 2020,30(7),126969 [DOI: 10.1016/j.bmcl.2020.126969]
  199. Veve M.P.; Wagner J.L.; Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmacotherapy 2018,38(9),935-946 [DOI: 10.1002/phar.2166]
  200. Mercuro N.J.; Veve M.P.; Clinical utility of Lefamulin: If not now, when? Curr Infect Dis Rep 2020,22(9),25 [DOI: 10.1007/s11908-020-00732-z]
  201. Zhanel G.G.; Deng C.; Zelenitsky S.; Lawrence C.K.; Adam H.J.; Golden A.; Berry L.; Schweizer F.; Zhanel M.A.; Irfan N.; Bay D.; Lagac��-Wiens P.; Walkty A.; Mandell L.; Lynch J.P.; Karlowsky J.A.; Lefamulin: A novel oral and intravenous pleuromutilin for the treatment of community-acquired bacterial pneumonia. Drugs 2021,81(2),233-256 [DOI: 10.1007/s40265-020-01443-4]
  202. Koulenti D.; Xu E.; Yin Sum Mok I.; Song A.; Karageorgopoulos D.E.; Armaganidis A.; Lipman J.; Tsiodras S.; Novel antibiotics for multidrug-resistant gram-positive microorganisms. Microorganisms 2019,7(10),386-390 [DOI: 10.3390/microorganisms7100386]
  203. Anderson S.D.; Gums J.G.; Ceftobiprole: An extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann Pharmacother 2008,42(6),806-816 [DOI: 10.1345/aph.1L016]
  204. Zhanel G.G.; Lam A.; Schweizer F.; Thomson K.; Walkty A.; Rubinstein E.; Gin A.S.; Hoban D.J.; Noreddin A.M.; Karlowsky J.A.; Ceftobiprole. A review of a broad spectrum and anti-MRSA cephalosporin. Am J Clin Dermatol 2008,9(4),245-254 [DOI: 10.2165/00128071-200809040-00004]
  205. Noel G.J.; Strauss R.S.; Amsler K.; Heep M.; Pypstra R.; Solomkin J.S.; Treatment of complicated skin and skin structure infections caused by gram-positive bacteria with Ceftobiprole: Results of a double-blind, randomized trial. Antimicrob Agents Chemother 2007,52,37-44 [DOI: 10.1128/AAC.00551-07]
  206. Noel G.J.; Bush K.; Bagchi P.; Ianus J.; Strauss R.S.; A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 2008,46(5),647-655 [DOI: 10.1086/526527]
  207. Bhavnani S.M.; Hammel J.P.; Lakota E.A.; Safir M.C.; VanScoy B.D.; Nagira Y.; Rubino C.M.; Sato N.; Koresawa T.; Kondo K.; Ambrose P.G.; Pharmacokinetic-pharmacodynamic target attainment analyses to support dose selection for ME1100, an Arbekacin inhalation solution. Antimicrob Agents Chemother 2020,64(10),e02367-19 [DOI: 10.1128/AAC.02367-19]
  208. Chavan R.; Zope V.; Chavan N.; Shaikh J.; Patil K.; Yeole R.; Bhagwat S.; Patel M.; Assessment of in vitro inhibitory effects of novel anti MRSA benzoquinolizine fluoroquinolone WCK 771 (levonadifloxacin) and its metabolite on human liver cytochrome P450 enzymes. Xenobiotica 2020,50(10),1149-1157 [DOI: 10.1080/00498254.2020.1756007]
  209. Mason J.W.; Chugh R.; Patel A.; Gutte R.; Bhatia A.; Electrocardiographic effects of a supratherapeutic dose of WCK 2349, a benzoquinolizine fluoroquinolone. Clin Transl Sci 2019,12(1),47-52 [DOI: 10.1111/cts.12594]
  210. Yuan J.; Mo B.; Ma Z.; Lv Y.; Cheng S.L.; Yang Y.; Tong Z.; Wu R.; Sun S.; Cao Z.; Wu J.; Zhu D.; Chang L.; Zhang Y.; Zhao L.; Wang X.; Wang X.; Wang D.; Li X.; Peng Y.; Liang Y.; Liu H.; Xiao Z.; Lv X.; Wu S.; Dai Y.; Huang Y.; Hu Z.; Qiu C.; Li X.; Zhang S.; Li W.; Liu S.; Shi Y.; Xiong C.; Kuang J.; Xiu Q.; Cui S.; Li J.; Lin Q.; Huang W.; Wan Y.; Qimanguli ; Shen C.; Xiao Y.; Wu X.; Chuang Y.C.; Perng W.C.; Tsao S-M.; Hsu J-Y.; Wang C-C.; Wang J-H.; Yeh P-F.; Lin H-H.; Kuo P.H.; Lin M-S.; Su W-J.; Safety and efficacy of oral nemonoxacin versus levofloxacin in treatment of community-acquired pneumonia: A phase 3, multicenter, randomized, double-blind, double-dummy, active-controlled, non-inferiority trial. J Microbiol Immunol Infect 2019,52(1),35-44 [DOI: 10.1016/j.jmii.2017.07.011]
  211. Wu J.; Wu H.; Wang Y.; Chen Y.; Guo B.; Cao G.; Wu X.; Yu J.; Wu J.; Zhu D.; Guo Y.; Yuan H.; Hu F.; Zhang J.; Tolerability and pharmacokinetics of Contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of Contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis. Clin Ther 2019,41(6),1164-1174.e4 [DOI: 10.1016/j.clinthera.2019.04.025]
  212. Bassetti M.; Righi E.; Safety profiles of old and new antimicrobials for the treatment of MRSA infections. Expert Opin Drug Saf 2016,15(4),467-481 [DOI: 10.1517/14740338.2016.1142528]
  213. Goldberg L.; Das A.; Efficacy and safety of iv-to-oral lefamulin, a pleuromutilin antibiotic, for treatment of communityacquired bacterial pneumonia: The phase 3 LEAP 1 Trial. Clin Infect Dis 2019,69,1856-1867 [DOI: 10.1093/cid/ciz090]
  214. Overcash J.S.; Kim C.; Keech R.; Gumenchuk I.; Ninov B.; Gonzalez-Rojas Y.; Waters M.; Simeonov S.; Engelhardt M.; Saulay M.; Ionescu D.; Smart J.I.; Jones M.E.; Hamed K.A.; Ceftobiprole compared with Vancomycin plus Aztreonam in the treatment of acute bacterial skin and skin structure infections: Results of a Phase 3, randomized, double-blind trial (TARGET). Clin Infect Dis 2021,73(7),e1507-e1517 [DOI: 10.1093/cid/ciaa974]
  215. Schiebel J.; Chang A.; Shah S.; Lu Y.; Liu L.; Pan P.; Hirschbeck M.W.; Tareilus M.; Eltschkner S.; Yu W.; Cummings J.E.; Knudson S.E.; Bommineni G.R.; Walker S.G.; Slayden R.A.; Sotriffer C.A.; Tonge P.J.; Kisker C.; Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J Biol Chem 2014,289(23),15987-16005 [DOI: 10.1074/jbc.M113.532804]
  216. Wittke F.; Vincent C.; Chen J.; Heller B.; Kabler H.; Overcash J.S.; Leylavergne F.; Dieppois G.; Afabicin, a first-in-class anti-staphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: Clinical non-inferiority to vancomycin/linezolid. Antimicrob Agents Chemother 2020,64(10),e00250-20 [DOI: 10.1128/AAC.00250-20]
  217. Yendewa G.A.; Griffiss J.M.; Jacobs M.R.; Fulton S.A.; O���Riordan M.A.; Gray W.A.; Proskin H.M.; Winkle P.; Salata R.A.; A two-part phase 1 study to establish and compare the safety and local tolerability of two nasal formulations of XF-73 for decolonisation of Staphylococcus aureus: A previously investigated 0.5 mg/g viscosified gel formulation versus a modified formulation. J Glob Antimicrob Resist 2020,21,171-180 [DOI: 10.1016/j.jgar.2019.09.017]
  218. Krievins D.; Brandt R.; Hawser S.; Hadvary P.; Islam K.; Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob Agents Chemother 2009,53(7),2834-2840 [DOI: 10.1128/AAC.01383-08]
  219. Our Pipeline. TAXIS Available From: https://www.taxispharma.com/research development/our-pipeline/2022
  220. Huynh T.; Stecher M.; Mckinnon J.; Jung N.; Rupp M.E.; Safety and tolerability of 514G3, a true human anti-protein a monoclonal antibody for the treatment of S. aureus bacteremia. Open Forum Infect Dis 2016,3(1)(Suppl. 1),1354 [DOI: 10.1093/ofid/ofw172.1057]
  221. Schneider T.; M��ller A.; Miess H.; Gross H.; Cyclic lipopeptides as antibacterial agents ��� Potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol 2014,304(1),37-43 [DOI: 10.1016/j.ijmm.2013.08.009]
  222. Chen X.; Li S.; Yu L.; Miller A.; Du L.; Systematic optimization for production of the anti- antibiotics -8294A in an engineered strain of Lysobacter enzymogenes. Microb Biotechnol 2019,12(6),1430-1440 [DOI: 10.1111/1751-7915.13484]
  223. Butler M.S.; Cooper M.A.; Antibiotics in the clinical pipeline in 2011. J Antibiot (Tokyo) 2011,64(6),413-425 [DOI: 10.1038/ja.2011.44]
  224. Moir D.T.; Opperman T.J.; Butler M.M.; Bowlin T.L.; New classes of antibiotics. Curr Opin Pharmacol 2012,12(5),535-544 [DOI: 10.1016/j.coph.2012.07.004]
  225. Farrell D.J.; Robbins M.; Rhys-Williams W.; Love W.G.; In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant gram-positive and gram-negative bacterial species. Int J Antimicrob Agents 2010,35(6),531-536 [DOI: 10.1016/j.ijantimicag.2010.02.008]
  226. Sakr A.; Br��geon F.; Rolain J.M.; Blin O.; Staphylococcus aureus nasal decolonization strategies: A review. Expert Rev Anti Infect Ther 2019,17(5),327-340 [DOI: 10.1080/14787210.2019.1604220]
  227. Laue H.; Weiss L.; Bernardi A.; Hawser S.; Lociuro S.; Islam K.; In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J Antimicrob Chemother 2007,60(6),1391-1394 [DOI: 10.1093/jac/dkm409]
  228. Kohlhoff S.A.; Sharma R.; Iclaprim. Expert Opin Investig Drugs 2007,16(9),1441-1448 [DOI: 10.1517/13543784.16.9.1441]
  229. Sincak C.A.; Schmidt J.M.; Iclaprim, a novel diaminopyrimidine for the treatment of resistant gram-positive infections. Ann Pharmacother 2009,43(6),1107-1114 [DOI: 10.1345/aph.1L167]
  230. Ma Z.; Lynch A.S.; Development of a dual-acting antibacterial agent (TNP-2092) for the treatment of persistent bacterial infections. J Med Chem 2016,59(14),6645-6657 [DOI: 10.1021/acs.jmedchem.6b00485]
  231. Nazli A.; He D.; Xu H.; Wang Z-P.; He Y.; A comparative insight on the newly emerging rifamycins: Rifametane, Rifalazil, TNP-2092 and TNP-2198. Curr Med Chem 2021,28,1-30 [PMID: 34365945]
  232. Park H.S.; Yoon Y.M.; Jung S.J.; Kim C.M.; Kim J.M.; Kwak J.H.; Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J Antimicrob Chemother 2007,60(3),568-574 [DOI: 10.1093/jac/dkm236]
  233. You I.; Kariyama R.; Zervos M.J.; Kumon H.; Chow J.W.; In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 2000,36(1),37-41 [DOI: 10.1016/S0732-8893(99)00104-2]
  234. Patel M.V.; De Souza N.J.; Gupte S.V.; Jafri M.A.; Bhagwat S.S.; Chugh Y.; Khorakiwala H.F.; Jacobs M.R.; Appelbaum P.C.; Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Antimicrob Agents Chemother 2004,48(12),4754-4761 [DOI: 10.1128/AAC.48.12.4754-4761.2004]
  235. Farrell D.J.; Liverman L.C.; Biedenbach D.J.; Jones R.N.; JNJ-Q2, a new fluoroquinolone with potent In vitro activity against Staphylococcus aureus, including methicillin- and fluoroquinolone-resistant strains. Antimicrob Agents Chemother 2011,55(7),3631-3634 [DOI: 10.1128/AAC.00162-11]
  236. Farrell D.J.; Robbins M.; Rhys-Williams W.; Love W.G.; Investigation of the potential for mutational resistance to XF-73, retapamulin, mupirocin, fusidic acid, daptomycin, and vancomycin in methicillin-resistant Staphylococcus aureus isolates during a 55-passage study. Antimicrob Agents Chemother 2011,55(3),1177-1181 [DOI: 10.1128/AAC.01285-10]
  237. Remy J.M.; Tow-Keogh C.A.; McConnell T.S.; Dalton J.M.; DeVito J.A.; Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: Resistance selection and characterization. J Antimicrob Chemother 2012,67(12),2814-2820 [DOI: 10.1093/jac/dks307]
  238. Noviello S.; Huang D.B.; Corey G.R.; Iclaprim: A differentiated option for the treatment of skin and skin structure infections. Expert Rev Anti Infect Ther 2018,16(11),793-803 [DOI: 10.1080/14787210.2018.1536545]
  239. Li Z.; Liu Y.; Wang R.; Li A.; Antibacterial activities of nemonoxacin against clinical isolates of Staphylococcus aureus: An in vitro comparison with three fluoroquinolones. World J Microbiol Biotechnol 2014,30(11),2927-2932 [DOI: 10.1007/s11274-014-1720-2]
  240. Flamm R.K.; Farrell D.J.; Rhomberg P.R.; Scangarella-Oman N.E.; Sader H.S.; Gepotidacin (GSK2140944) In vitro activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 2017,61(7),e00468-17 [DOI: 10.1128/AAC.00468-17]
  241. McGhee P.; Clark C.; Credito K.; Beachel L.; Pankuch G.A.; Appelbaum P.C.; Kosowska-Shick K.; In vitro activity of fusidic acid (CEM-102, sodium fusidate) against Staphylococcus aureus isolates from cystic fibrosis patients and its effect on the activities of tobramycin and amikacin against Pseudomonas aeruginosa and Burkholderia cepacia. Antimicrob Agents Chemother 2011,55(5),2417-2419 [DOI: 10.1128/AAC.01672-10]
  242. Sader H.; Rhomberg P.; Duncan L.; Flamm R.; In vitro activity and potency of the novel oxazolidinone MRX-I tested against contemporary clinical isolates of Gram-positive bacteria. American Society for Microbiology (ASM Microbe), 2017.
  243. Lawrence L.; Danese P.; DeVito J.; Franceschi F.; Sutcliffe J.; In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob Agents Chemother 2008,52(5),1653-1662 [DOI: 10.1128/AAC.01383-07]
  244. O���Dwyer K.; Hackel M.; Hightower S.; Hoban D.; Bouchillon S.; Qin D.; Aubart K.; Zalacain M.; Butler D.; Comparative analysis of the antibacterial activity of a novel peptide deformylase inhibitor, GSK1322322. Antimicrob Agents Chemother 2013,57(5),2333-2342 [DOI: 10.1128/AAC.02566-12]
  245. Heidtmann C.V.; Voukia F.; Hansen L.N.; S��rensen S.H.; Urlund B.; Nielsen S.; Pedersen M.; Kelawi N.; Andersen B.N.; Pedersen M.; Reinholdt P.; Kongsted J.; Nielsen C.U.; Klitgaard J.K.; Nielsen P.; Discovery of a potent adenine���benzyltriazolo���pleuromutilin conjugate with pronounced antibacterial activity against MRSA. J Med Chem 2020,63(24),15693-15708 [DOI: 10.1021/acs.jmedchem.0c01328]
  246. Sader H.S.; Biedenbach D.J.; Paukner S.; Ivezic-Schoenfeld Z.; Jones R.N.; Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2012,56(3),1619-1623 [DOI: 10.1128/AAC.05789-11]
  247. Nair S.; Desai S.; Poonacha N.; Vipra A.; Sharma U.; Antibiofilm activity and synergistic inhibition of Staphylococcus aureus biofilms by bactericidal protein P128 in combination with antibiotics. Antimicrob Agents Chemother 2016,60(12),7280-7289 [DOI: 10.1128/AAC.01118-16]
  248. Iqbal Z.; Seleem M.N.; Hussain H.I.; Huang L.; Hao H.; Yuan Z.; Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci Rep 2016,6(1),35442 [DOI: 10.1038/srep35442]
  249. Giacobbe D.R.; Labate L.; Vena A.; Bassetti M.; Potential role of new-generation antibiotics in acute bacterial skin and skin structure infections. Curr Opin Infect Dis 2021,34(2),109-117 [DOI: 10.1097/QCO.0000000000000708]
  250. Temme J.S.; Butler D.L.; Gildersleeve J.C.; Anti-glycan antibodies: Roles in human disease. Biochem J 2021,478(8),1485-1509 [DOI: 10.1042/BCJ20200610]
  251. Lehar S.M.; Pillow T.; Xu M.; Staben L.; Kajihara K.K.; Vandlen R.; DePalatis L.; Raab H.; Hazenbos W.L.; Hiroshi Morisaki J.; Kim J.; Park S.; Darwish M.; Lee B.C.; Hernandez H.; Loyet K.M.; Lupardus P.; Fong R.; Yan D.; Chalouni C.; Luis E.; Khalfin Y.; Plise E.; Cheong J.; Lyssikatos J.P.; Strandh M.; Koefoed K.; Andersen P.S.; Flygare J.A.; Wah Tan M.; Brown E.J.; Mariathasan S.; Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 2015,527(7578),323-328 [DOI: 10.1038/nature16057]
  252. Staben L.R.; Koenig S.G.; Lehar S.M.; Vandlen R.; Zhang D.; Chuh J.; Yu S.F.; Ng C.; Guo J.; Liu Y.; Fourie-O���Donohue A.; Go M.; Linghu X.; Segraves N.L.; Wang T.; Chen J.; Wei B.; Phillips G.D.L.; Xu K.; Kozak K.R.; Mariathasan S.; Flygare J.A.; Pillow T.H.; Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody���drug conjugates. Nat Chem 2016,8(12),1112-1119 [DOI: 10.1038/nchem.2635]
  253. Panchal G.; Pandit R.; Trailokya A.; Sharma A.; Arbekacin-a novel antibiotic for critical infections. J Assoc Physicians India 2019,67(7),93-97 [PMID: 31559785]
  254. Singh S.B.; Kaelin D.E.; Wu J.; Miesel L.; Tan C.M.; Meinke P.T.; Olsen D.B.; Lagrutta A.; Wei C.; Liao Y.; Peng X.; Wang X.; Fukuda H.; Kishii R.; Takei M.; Yajima M.; Shibue T.; Shibata T.; Ohata K.; Nishimura A.; Fukuda Y.; Structure activity relationship of pyridoxazinone substituted RHS analogs of oxabicyclooctane-linked 1,5-naphthyridinyl novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-6). Bioorg Med Chem Lett 2015,25(17),3636-3643 [DOI: 10.1016/j.bmcl.2015.06.057]
  255. Shang R.; Liu Y.; Xin Z.; Guo W.; Guo Z.; Hao B.; Jianping L.; Synthesis and antibacterial evaluation of novel pleuromutilin derivatives. Eur J Med Chem 2013,63,231-238 [DOI: 10.1016/j.ejmech.2013.01.048]
  256. Scheeren T.W.L.; Ceftobiprole medocaril in the treatment of hospital-acquired pneumonia. Future Microbiol 2015,10(12),1913-1928 [DOI: 10.2217/fmb.15.115]
  257. Yum J.H.; Kim C.K.; Yong D.; Lee K.; Chong Y.; Kim C.M.; Kim J.M.; Ro S.; Cho J.M.; In vitro activities of CG400549, a novel FabI inhibitor, against recently isolated clinical staphylococcal strains in Korea. Antimicrob Agents Chemother 2007,51(7),2591-2593 [DOI: 10.1128/AAC.01562-06]
  258. Rautio J.; K��rkk��inen J.; Sloan K.B.; Prodrugs ��� Recent approvals and a glimpse of the pipeline. Eur J Pharm Sci 2017,109,146-161 [DOI: 10.1016/j.ejps.2017.08.002]
  259. Ross J.E.; Flamm R.K.; Jones R.N.; Initial broth microdilution quality control guidelines for Debio 1452, a FabI inhibitor antimicrobial agent. Antimicrob Agents Chemother 2015,59(11),7151-7152 [DOI: 10.1128/AAC.01690-15]
  260. Schneider P.; Hawser S.; Islam K.; Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg Med Chem Lett 2003,13(23),4217-4221 [DOI: 10.1016/j.bmcl.2003.07.023]
  261. Surur A.S.; Sun D.; Macrocycle-antibiotic hybrids: A path to clinical candidates. Front Chem 2021,9,659845 [DOI: 10.3389/fchem.2021.659845]
  262. De Rosa M.; Verdino A.; Soriente A.; Marabotti A.; The odd couple (s): An overview of beta-lactam antibiotics bearing more than one pharmacophoric group. Int J Mol Sci 2021,22(2),617-638 [DOI: 10.3390/ijms22020617]
  263. Lemaire, S.; Van Bambeke, F.; Tulkens, P.M. Contrasting effect of acidic pH on the batericidal activities of CEM-102 (fusidic acid) vs. linezolid and clindamycin towards Staphylococcus aureus, 49 Interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, California, Sep 12-15, 2009.
  264. Marinelli F.; Genilloud O.; Antimicrobials: New and old molecules in the fight against multi-resistant bacteria 2013
  265. Kaur G.; Pavadai E.; Wittlin S.; Chibale K.; 3D-QSAR modeling and synthesis of new fusidic acid derivatives as antiplasmodial agents. J Chem Inf Model 2018,58(8),1553-1560 [DOI: 10.1021/acs.jcim.8b00105]
  266. Oral sodium fusidate (CEM-102) versus oral linezolid for the treatment of acute bacterial skin and skin structure infections. Clinicaltrials.gov Available From: https://clinicaltrials.gov/ct2/show/NCT025704902019
  267. Comparative study of NXL103 versus Linezolid in Adults with Acute Bacterial Skin and Skin Structure Infections (ABSSSI). Clinicaltrials.gov Available From: https://clinicaltrials.gov/ct2/show/NCT009491302018
  268. Cai L.; Seiple I.B.; Li Q.; Modular chemical synthesis of streptogramin and lankacidin antibiotics. Acc Chem Res 2021,54(8),1891-1908 [DOI: 10.1021/acs.accounts.0c00894]
  269. Biocidium. Tracxn Available From: https://tracxn.com/d/companies/biocidium/__A1AwtbyuPpFosPFzBrVDoWk6tH1IzPhIJlK_Tt94OiE2016
  270. Vander Elst N.; Linden S.B.; Lavigne R.; Meyer E.; Briers Y.; Nelson D.C.; Characterization of the bacteriophage-derived endolysins PlySs2 and PlySs9 with in vitro lytic activity against bovine mastitis Streptococcus uberis. Antibiotics (Basel) 2020,9(9),621-635 [DOI: 10.3390/antibiotics9090621]
  271. Swift S.M.; Sauve K.; Cassino C.; Schuch R.; Exebacase is active in vitro in pulmonary surfactant and is efficacious alone and synergistic with Daptomycin in a mouse model of lethal Staphylococcus aureus lung infection. Antimicrob Agents Chemother 2021,65(9),e02723-20 [DOI: 10.1128/AAC.02723-20]
  272. Bamberger D.M.; Bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: The potential role of daptomycin. Ther Clin Risk Manag 2007,3(4),675-684 [PMID: 18472990]
  273. Rasmussen R.V.; Fowler V.G.; Skov R.; Bruun N.E.; Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol 2011,6(1),43-56 [DOI: 10.2217/fmb.10.155]
  274. Fowler, V.; Das, A.; Lipka, J.; Schuch, R.; Cassino, C. Exebacase (lysin CF-301) improved clinical responder rates in methicillin-resistant Staphylococcus aureus bacteremia and endocarditis compared to standard of care antibiotics alone in a first-in-patient phase 2 study. In European congress of clinical microbiology and infectious diseases, Amsterdam, Netherland, 2019.
  275. Safety, efficacy and pharmacokinetics of CF-301 vs. placebo in addition to antibacterial therapy for treatment of S. Aureus Bacteremia. Clinicaltrials.gov Available From: https://clinicaltrials.gov/ct2/show/NCT031634462021
  276. Expanded access study of exebacase in COVID-19 patients with persistent MRSA bacteremia. Clinicaltrials.gov Available From: https://clinicaltrials.gov/ct2/show/NCT045972422022
  277. Rello J.; Parisella F.R.; Perez A.; Alternatives to antibiotics in an era of difficult-to-treat resistance: New insights. Expert Rev Clin Pharmacol 2019,12(7),635-642 [DOI: 10.1080/17512433.2019.1619454]
  278. Huang D.B.; Sader H.S.; Rhomberg P.R.; Gaukel E.; Borroto-Esoda K.; Anti-staphylococcal lysin, LSVT-1701, activity: In vitro susceptibility of Staphylococcus aureus and coagulase-negative staphylococci (CoNS) clinical isolates from around the world collected from 2002 to 2019. Diagn Microbiol Infect Dis 2021,101(3),115471-115477 [DOI: 10.1016/j.diagmicrobio.2021.115471]
  279. Fran��ois B.; Barraud O.; Jafri H.S.; Antibody-based therapy to combat Staphylococcus aureus infections. Clin Microbiol Infect 2017,23(4),219-221 [DOI: 10.1016/j.cmi.2017.02.035]
  280. XBiotech announces top-line results for 514G3 antibody therapy in serious Staphylococcus aureus infections. GlobeNewswire Available From: https://www.globenewswire.com/news-release/2017/04/03/953500/0/en/XBiotech-Announces-Top-Line-Results-for-514G3-Antibody-Therapy-in-Serious-Staphylococcus-aureus-Infections.html2017
  281. A study of the safety and efficacy of 514g3 in subjects hospitalized with bacteremia due to Staphylococcus aureus. Clinicaltrials.gov Available From: https://clinicaltrials.gov/ct2/show/NCT023579662017
  282. Hageman J.C.; Uyeki T.M.; Francis J.S.; Jernigan D.B.; Wheeler J.G.; Bridges C.B.; Barenkamp S.J.; Sievert D.M.; Srinivasan A.; Doherty M.C.; McDougal L.K.; Killgore G.E.; Lopatin U.A.; Coffman R.; MacDonald J.K.; McAllister S.K.; Fosheim G.E.; Patel J.B.; McDonald L.C.; Severe community-acquired pneumonia due to Staphylococcus aureus, 2003-04 influenza season. Emerg Infect Dis 2006,12(6),894-899 [DOI: 10.3201/eid1206.051141]
  283. Mayor A.; Chesnay A.; Desoubeaux G.; Ternant D.; Heuz��-Vourc���h N.; S��cher T.; Therapeutic antibodies for the treatment of respiratory tract infections���current overview and perspectives. Vaccines (Basel) 2021,9(2),151-172 [DOI: 10.3390/vaccines9020151]
  284. Vanamala K.; Tatiparti K.; Bhise K.; Sau S.; Scheetz M.H.; Rybak M.J.; Andes D.; Iyer A.K.; Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 2021,26(1),31-43 [DOI: 10.1016/j.drudis.2020.10.011]
  285. Hall-Stoodley L.; Costerton J.W.; Stoodley P.; Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2004,2(2),95-108 [DOI: 10.1038/nrmicro821]
  286. Salem A.H.; Elkhatib W.F.; Noreddin A.M.; Pharmacodynamic assessment of vancomycin���rifampicin combination against methicillin resistant Staphylococcus Aureus biofilm: A parametric response surface analysis. J Pharm Pharmacol 2010,63(1),73-79 [DOI: 10.1111/j.2042-7158.2010.01183.x]
  287. Dube D.; Agrawal G.P.; Vyas S.P.; Tuberculosis: From molecular pathogenesis to effective drug carrier design. Drug Discov Today 2012,17(13-14),760-773 [DOI: 10.1016/j.drudis.2012.03.012]
  288. Li J.; Zhang K.; Ruan L.; Chin S.F.; Wickramasinghe N.; Liu H.; Ravikumar V.; Ren J.; Duan H.; Yang L.; Chan-Park M.B.; Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial debridement. Nano Lett 2018,18(7),4180-4187 [DOI: 10.1021/acs.nanolett.8b01000]
  289. Mikkaichi T.; Yeaman M.R.; Hoffmann A.; Group M.S.I.; Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLOS Comput Biol 2019,15(7),e1007087 [DOI: 10.1371/journal.pcbi.1007087]
  290. Grassi L.; Di Luca M.; Maisetta G.; Rinaldi A.C.; Esin S.; Trampuz A.; Batoni G.; Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front Microbiol 2017,8,1917-1929 [DOI: 10.3389/fmicb.2017.01917]
  291. Kim W.; Hendricks G.L.; Tori K.; Fuchs B.B.; Mylonakis E.; Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem 2018,10(7),779-794 [DOI: 10.4155/fmc-2017-0199]
  292. Pacios O.; Blasco L.; Bleriot I.; Fernandez-Garcia L.; Gonz��lez Bardanca M.; Ambroa A.; L��pez M.; Bou G.; Tom��s M.; Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics (Basel) 2020,9(2),65-68 [DOI: 10.3390/antibiotics9020065]
  293. Hageman J.C.; Liedtke L.A.; Sunenshine R.H.; Strausbaugh L.J.; McDonald L.C.; Tenover F.C.; Management of persistent bacteremia caused by methicillin-resistant Staphylococcus aureus: A survey of infectious diseases consultants. Clin Infect Dis 2006,43(5),e42-e45 [DOI: 10.1086/506568]
  294. Moellering R.C.; MRSA: The first half century. J Antimicrob Chemother 2012,67(1),4-11 [DOI: 10.1093/jac/dkr437]
  295. Butler M.S.; Blaskovich M.A.; Cooper M.A.; Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo) 2013,66(10),571-591 [DOI: 10.1038/ja.2013.86]
  296. Livermore D.M.; Introduction: The challenge of multiresistance. Int J Antimicrob Agents 2007,29(Suppl. 3),S1-S7 [DOI: 10.1016/S0924-8579(07)00158-6]
  297. Barrett J.F.; MRSA ��� what is it, and how do we deal with the problem? Expert Opin Ther Targets 2005,9(2),253-265 [DOI: 10.1517/14728222.9.2.253]

MeSH Term

Humans
Methicillin-Resistant Staphylococcus aureus
Anti-Bacterial Agents
Staphylococcal Infections
Microbial Sensitivity Tests

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0infectionsMRSAanti-MRSAstrategiesnewdevelopmentantibioticstreatmentantimicrobialsresearcharticlesincluding'clinicalclinicalinformationsafetypharmacokineticsleadingcausesepticemiaendocarditispneumoniaskinsofttissuebonejointhospital-acquiredparticularmethicillin-resistantStaphylococcusaureusassociatedhighmorbiditymortalitycontinuesmajorpublichealthproblememergencemultidrug-resistantstrainsalongwideconsumptionmadehugechallengeNovelegnoveladministrationsurgentlyneededpastdecadepharmaceuticalcompaniesinvestedR&DspurredfavorablepoliciescollectedauthenticonlinedatabasesGoogleScholarPubMedScopusWebScienceusingdifferentcombinationskeywords'anti-MRSA''antibiotic''antimicrobial'trial'phase'studies''pipeline'extractedcomparedprovideddrugmanufacturer'swebsiteClinicalTrialsgovhttps://clinicaltrialsgov/confirmlatestphaseagentspresentreviewfocusescurrentstatusconcerningchemistrypharmacologicaltargetsindicationsrouteadministrationefficacypharmacodynamicsaimsdiscusschallengesopportunitiesdevelopingdrugsTreatmentInfection:We?MRSAantimicrobialtrialseffectivenessmultidrugresistance

Similar Articles

Cited By