Intelligent Drug Delivery: Pioneering Stimuli-Responsive Systems to Revolutionize Disease Management- An In-depth Exploration.

Badarinadh Kallepalli, Unnati Garg, Neha Jain, Rohan Nagpal, Sakshi Malhotra, Triveni Tiwari, Shreya Kaul, Upendra Nagaich
Author Information
  1. Badarinadh Kallepalli: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India.
  2. Unnati Garg: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India.
  3. Neha Jain: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India. ORCID
  4. Rohan Nagpal: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India.
  5. Sakshi Malhotra: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India.
  6. Triveni Tiwari: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India.
  7. Shreya Kaul: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India. ORCID
  8. Upendra Nagaich: Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India. ORCID

Abstract

In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.

Keywords

References

  1. Samanta D.; Hosseini-Nassab N.; Zare R.N.; Electroresponsive nanoparticles for drug delivery on demand. Nanoscale 2016,8(17),9310-9317 [DOI: 10.1039/C6NR01884J]
  2. Chen H.; Zeng X.; Tham H.P.; Phua S.Z.F.; Cheng W.; Zeng W.; Shi H.; Mei L.; Zhao Y.; NIR���light���activated combination therapy with a precise ratio of photosensitizer and prodrug using a host���guest strategy. Angew Chem Int Ed 2019,58(23),7641-7646 [DOI: 10.1002/anie.201900886]
  3. Kocak G.; Tuncer C.; B��t��n V.; pH-Responsive polymers. Polym Chem 2017,8(1),144-176 [DOI: 10.1039/C6PY01872F]
  4. Askari E.; Seyfoori A.; Amereh M.; Gharaie S.S.; Ghazali H.S.; Ghazali Z.S.; Stimuli-responsive hydrogels for local post-surgical drug delivery. Gels 2020,6(2),14 [DOI: 10.3390/gels6020014]
  5. Rahim M.A.; Jan N.; Khan S.; Shah H.; Madni A.; Khan A.; Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers 2021,13(4),670 [DOI: 10.3390/cancers13040670]
  6. Vinchhi P.; Rawal S.U.; Patel M.M.; External stimuli-responsive drug delivery systems. Drug Delivery Devices and Therapeutic Systems 2021,267-288 [DOI: 10.1016/B978-0-12-819838-4.00023-7]
  7. Pham S.H.; Choi Y.; Choi J.; Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics 2020,12(7),630 [DOI: 10.3390/pharmaceutics12070630]
  8. Lopes J.; Santos G.; Barata P.; Oliveira R.; Lopes C.; Physical and chemical stimuli-responsive drug delivery systems: Targeted delivery and main routes of administration. Curr Pharm Des 2013,19(41),7169-7184 [DOI: 10.2174/13816128113199990698]
  9. Khan F.; Atif M.; Haseen M.; Kamal S.; Khan M.S.; Shahid S.; Nami S.A.A.; Synthesis, classification and properties of hydrogels: Their applications in drug delivery and agriculture. J Mater Chem B Mater Biol Med 2022,10(2),170-203 [DOI: 10.1039/D1TB01345A]
  10. Chatterjee S.; Hui P.C.L.; Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems. Polymers 2021,13(13),2086 [DOI: 10.3390/polym13132086]
  11. Qiao S.; Wang H.; Temperature-responsive polymers: Synthesis, properties, and biomedical applications. Nano Res 2018,11(10),5400-5423 [DOI: 10.1007/s12274-018-2121-x]
  12. Fan J.P.; Tao F.H.; Zhang X.H.; Yuan T.T.; Xie C.F.; Chen H.P.; Peng H-L.; Synthesis of an ursolic acid organic salt based low-molecular-weight supramolecular hydrogel with unique thermo-responsiveness behavior. Colloids Surf A Physicochem Eng Asp 2022,652,129839 [DOI: 10.1016/j.colsurfa.2022.129839]
  13. Kubo T.; Tachibana K.; Naito T.; Mukai S.; Akiyoshi K.; Balachandran J.; Otsuka K.; Magnetic field stimuli-sensitive drug release using a magnetic thermal seed coated with thermal-responsive molecularly imprinted polymer. ACS Biomater Sci Eng 2019,5(2),759-767 [DOI: 10.1021/acsbiomaterials.8b01401]
  14. Jose R.; Rinita J.; Jothi N.S.N.; Synthesis and characterisation of stimuli-responsive drug delivery system using ZnFe2O4 and Ag1-XZnxFe2O4 nanoparticles. Mater Technol 2021,36(6),347-355 [DOI: 10.1080/10667857.2020.1758481]
  15. Kang B.; Shin M.K.; Han S.; Oh I.; Kim E.; Park J.; Son H.Y.; Kang T.; Jung J.; Huh Y-M.; Haam S.; Lim E-K.; Magnetic nanochain-based smart drug delivery system with remote tunable drug release by a magnetic field. Biochip J 2022,16(3),280-290 [DOI: 10.1007/s13206-022-00072-1]
  16. Vlasova K.Y.; Piroyan A.; Le-Deygen I.M.; Vishwasrao H.M.; Ramsey J.D.; Klyachko N.L.; Golovin Y.I.; Rudakovskaya P.G.; Kireev I.I.; Kabanov A.V.; Sokolsky-Papkov M.; Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). J Colloid Interface Sci 2019,552,689-700 [DOI: 10.1016/j.jcis.2019.05.071]
  17. kianfar E.; Magnetic nanoparticles in targeted drug delivery: A Review. J Superconduc Novel Magnet 2021,34,1709-1735 [DOI: 10.1007/s10948-021-05932-9]
  18. Farzin A.; Etesami S.A.; Quint J.; Memic A.; Tamayol A.; Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater 2020,9(9),1901058 [DOI: 10.1002/adhm.201901058]
  19. Qiu Y.; Park K.; Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001,53(3),321-339 [DOI: 10.1016/S0169-409X(01)00203-4]
  20. Qu J.; Liang Y.; Shi M.; Guo B.; Gao Y.; Yin Z.; Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int J Biol Macromol 2019,140,255-264 [DOI: 10.1016/j.ijbiomac.2019.08.120]
  21. Mazidi Z.; Javanmardi S.; Naghib S.M.; Mohammadpour Z.; Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem Eng J 2022,433,134569 [DOI: 10.1016/j.cej.2022.134569]
  22. Liu Y.; Servant A.; Guy O.J.; Al-Jamal K.T.; Williams P.R.; Hawkins K.M.; Kostarelos K.; An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Sens Actuators B Chem 2012,175,100-105 [DOI: 10.1016/j.snb.2011.12.069]
  23. Dobrynin A.; Rubinstein M.; Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 2005,30(11),1049-1118 [DOI: 10.1016/j.progpolymsci.2005.07.006]
  24. Hajebi S.; Rabiee N.; Bagherzadeh M.; Ahmadi S.; Rabiee M.; Roghani-Mamaqani H.; Tahriri M.; Tayebi L.; Hamblin M.R.; Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019,92,1-18 [DOI: 10.1016/j.actbio.2019.05.018]
  25. Castano A.P.; Demidova T.N.; Hamblin M.R.; Mechanisms in photodynamic therapy: Part two���cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2005,2(1),1-23 [DOI: 10.1016/S1572-1000(05)00030-X]
  26. Pitt W.G.; Husseini G.A.; Staples B.J.; Ultrasonic drug delivery: A general review. Expert Opin Drug Deliv 2004,1(1),37-56 [DOI: 10.1517/17425247.1.1.37]
  27. Entzian K.; Aigner A.; Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics 2021,13(8),1135 [DOI: 10.3390/pharmaceutics13081135]
  28. Bamrungsap S.; Zhao Z.; Chen T.; Wang L.; Li C.; Fu T.; Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. nanomedicine ,7(8) [DOI: 10.2217/nnm.12.87]
  29. Subramani K.; Hosseinkhani H.; Khraisat A.; Hosseinkhani M.; Pathak Y.; Targeting nanoparticles as drug delivery systems for cancer treatment. Curr Nanosci 2009,5(2),135-140 [DOI: 10.2174/157341309788185406]
  30. Song G.; Petschauer J.; Madden A.; Zamboni W.; Nanoparticles and the mononuclear phagocyte system: Pharmacokinetics and applications for inflammatory diseases. Curr Rheumatol Rev 2014,10(1),22-34 [DOI: 10.2174/1573403X10666140914160554]
  31. Cai X.; Jiang Y.; Lin M.; Zhang J.; Guo H.; Yang F.; Leung W.; Xu C.; Ultrasound-responsive materials for drug/gene delivery. Front Pharmacol 2020,10,1650 [DOI: 10.3389/fphar.2019.01650]
  32. Huang D.; Sun M.; Bu Y.; Luo F.; Lin C.; Lin Z.; Weng Z.; Yang F.; Wu D.; Microcapsule-embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium. J Mater Chem B Mater Biol Med 2019,7(14),2330-2337 [DOI: 10.1039/C8TB02928H]
  33. Zhao H.; Sterner E.S.; Coughlin E.B.; Theato P.; O-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science. Macromolecules 2012,45(4),1723-1736 [DOI: 10.1021/ma201924h]
  34. Sun S.; Liang S.; Xu W.C.; Xu G.; Wu S.; Photoresponsive polymers with multi-azobenzene groups. Polym Chem 2019,10(32),4389-4401 [DOI: 10.1039/C9PY00793H]
  35. Kortekaas L.; Chen J.; Jacquemin D.; Browne W.R.; Proton-stabilized photochemically reversible E/Z isomerization of spiropyrans. J Phys Chem B 2018,122(24),6423-6430 [DOI: 10.1021/acs.jpcb.8b03528]
  36. Zhou T.; Xie S.; Zhou C.; Chen Y.; Li H.; Liu P.; Jiang R.; Hang L.; Jiang G.; All-in-one second near-infrared light-responsive drug delivery system for synergistic chemo-photothermal therapy. ACS Appl Bio Mater 2022,5(8),3841-3849 [DOI: 10.1021/acsabm.2c00208]
  37. Xing Y.; Zeng B.; Yang W.; Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol 2022,10,1075670 [DOI: 10.3389/fbioe.2022.1075670]
  38. Barhoumi A.; Liu Q.; Kohane D.S.; Ultraviolet light-mediated drug delivery: Principles, applications, and challenges. J Control Release 2015,219,31-42 [DOI: 10.1016/j.jconrel.2015.07.018]
  39. Rwei A.Y.; Lee J.J.; Zhan C.; Liu Q.; Ok M.T.; Shankarappa S.A.; Langer R.; Kohane D.S.; Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc Natl Acad Sci 2015,112(51),15719-15724 [DOI: 10.1073/pnas.1518791112]
  40. Alvarez-Lorenzo C.; Concheiro A.; Smart drug delivery systems: From fundamentals to the clinic. Chem Commun 2014,50(58),7743-7765 [DOI: 10.1039/C4CC01429D]
  41. Linsley C.S.; Wu B.M.; Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv 2017,8(2),89-107 [DOI: 10.4155/tde-2016-0060]
  42. Palanikumar L.; Al-Hosani S.; Kalmouni M.; Nguyen V.P.; Ali L.; Pasricha R.; pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol 2020,3(1),95 [DOI: 10.1038/s42003-020-0817-4]
  43. Mutalabisin M.F.; Chatterjee B.; Jaffri J.M.; ph responsive polymers in drug delivery. Res J Pharm Technol 2018,11(11),5115-5122 [DOI: 10.5958/0974-360X.2018.00934.4]
  44. Tan R.Y.H.; Lee C.S.; Pichika M.R.; Cheng S.F.; Lam K.Y.; PH responsive polyurethane for the advancement of biomedical and drug delivery. Polymers 2022,14(9),1672 [DOI: 10.3390/polym14091672]
  45. Zhuo S.; Zhang F.; Yu J.; Zhang X.; Yang G.; Liu X.; pH-sensitive biomaterials for drug delivery. Molecules 2020,25(23),5649 [DOI: 10.3390/molecules25235649]
  46. Bami M.S.; Raeisi Estabragh M.A.; Khazaeli P.; Ohadi M.; Dehghannoudeh G.; pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. J Drug Deliv Sci Technol 2022,70,102987 [DOI: 10.1016/j.jddst.2021.102987]
  47. Zhu Y.J.; Chen F.; pH-responsive drug-delivery systems. Chem Asian J 2015,10(2),284-305 [DOI: 10.1002/asia.201402715]
  48. Hoffman A.S.; Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 2013,65(1),10-16 [DOI: 10.1016/j.addr.2012.11.004]
  49. Mu Y.; Gong L.; Peng T.; Yao J.; Lin Z.; Advances in pH-responsive drug delivery systems. OpenNano 2021,5,100031 [DOI: 10.1016/j.onano.2021.100031]
  50. Wang K.; Li X.; Wang H.; Lu H.; Di D.; Zhao Q.; Wang S.; Evaluation on redox-triggered degradation of thioether-bridged hybrid mesoporous organosilica nanoparticles. Colloids Surf A Physicochem Eng Asp 2021,608,125566 [DOI: 10.1016/j.colsurfa.2020.125566]
  51. Song Y.; Cheng D.; Luo J.; Zhang M.; Yang Y.; Surfactant-free synthesis of monodispersed organosilica particles with pure sulfide-bridged silsesquioxane framework chemistry via extension of St��ber method. J Colloid Interface Sci 2021,591,129-138 [DOI: 10.1016/j.jcis.2021.01.071]
  52. Song H.; Peng T.; Wang X.; Li B.; Wang Y.; Song D.; Xu T.; Liu X.; Glutathione-sensitive mesoporous organosilica-coated gold nanorods as drug delivery system for photothermal therapy-enhanced precise chemotherapy. Front Chem 2022,10,842682 [DOI: 10.3389/fchem.2022.842682]
  53. Liu B.; Feng L.; Bian Y.; Yuan M.; Zhu Y.; Yang P.; Cheng Z.; Lin J.; Mn 2+/Fe 3+/Co 2+ and tetrasulfide bond co���incorporated dendritic mesoporous organosilica as multifunctional nanocarriers: One���step synthesis and applications for cancer therapy. Adv Healthc Mater 2022,11(14),2200665 [DOI: 10.1002/adhm.202200665]
  54. Wu H.; LeValley P.J.; Luo T.; Kloxin A.M.; Kiick K.L.; Manipulation of glutathione-mediated degradation of thiol���maleimide conjugates. Bioconjug Chem 2018,29(11),3595-3605 [DOI: 10.1021/acs.bioconjchem.8b00546]
  55. Xu W.; Wang H.; Dong L.; Zhang P.; Mu Y.; Cui X.; Zhou J.; Huo M.; Yin T.; Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid. Int J Nanomedicine 2019,14,4649-4666 [DOI: 10.2147/IJN.S201110]
  56. Liang Y.; Kiick K.L.; Liposome-cross-linked hybrid hydrogels for glutathione-triggered delivery of multiple cargo molecules. Biomacromolecules 2016,17(2),601-614 [DOI: 10.1021/acs.biomac.5b01541]
  57. Behroozi F.; Abdkhodaie M.J.; Abandansari H.S.; Satarian L.; Molazem M.; Al-Jamal K.T.; Baharvand H.; Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomater 2018,76,239-256 [DOI: 10.1016/j.actbio.2018.05.031]
  58. Guo X.; Cheng Y.; Zhao X.; Luo Y.; Chen J.; Yuan W.E.; Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018,16(1),74 [DOI: 10.1186/s12951-018-0398-2]
  59. Abed H.F.; Abuwatfa W.H.; Husseini G.A.; Redox-responsive drug delivery systems: A chemical perspective. Nanomaterials 2022,12,3183 [DOI: 10.3390/nano12183183]
  60. Jia R.; Teng L.; Gao L.; Su T.; Fu L.; Qiu Z.; Bi Y.; Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. Int J Nanomedicine 2021,16,1525-1551 [DOI: 10.2147/IJN.S293427]
  61. Liu Y.; Wu Y.; Luo Z.; Li M.; Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023,26(3),106279 [DOI: 10.1016/j.isci.2023.106279]
  62. Gao J.; Si F.; Wang F.; Li Y.; Wang G.; Zhao J.; Ma Y.; Yu R.; Li Y.; Jin C.; Li D.; Hollow mesoporous structured MnFe2O4 nanospheres: A biocompatible drug delivery system with pH-responsive release for potential application in cancer treatment. Solid State Sci 2023,135,107066 [DOI: 10.1016/j.solidstatesciences.2022.107066]
  63. Xu J.; Chen M.; Li M.; Xu S.; Liu H.; Integration of chemotherapy and phototherapy based on a pH/ROS/NIR multi-responsive polymer-modified MSN drug delivery system for improved antitumor cells efficacy. Colloids Surf A Physicochem Eng Asp 2023,663,131015 [DOI: 10.1016/j.colsurfa.2023.131015]
  64. Hu L.; Xiong C.; Wei G.; Yu Y.; Li S.; Xiong X.; Zou J.J.; Tian J.; Stimuli-responsive charge-reversal MOF@polymer hybrid nanocomposites for enhanced co-delivery of chemotherapeutics towards combination therapy of multidrug-resistant cancer. J Colloid Interface Sci 2022,608(Pt 2),1882-1893 [DOI: 10.1016/j.jcis.2021.10.070]
  65. Kaul S.; Nagaich U.; Verma N.; Investigating nanostructured liquid crystalline particles as prospective ocular delivery vehicle for tobramycin sulfate: Ex vivo and in vivo studies. J Adv Pharm Technol Res 2021,12(4),356-361 [DOI: 10.4103/japtr.japtr_188_21]
  66. Zhou J.; Li K.; Qin H.; Xie B.; Liao H.; Su X.; Li C.; He X.; Chen W.; Jiang X.; Programmed-stimuli responsive carrier-free multidrug delivery system for highly efficient trimodal combination therapy. J Colloid Interface Sci 2023,637,453-464 [DOI: 10.1016/j.jcis.2023.01.091]
  67. Lin X.; Wu J.; Liu Y.; Lin N.; Hu J.; Zhang B.; Stimuli-responsive drug delivery systems for the diagnosis and therapy of lung cancer. Molecules 2022,27(3),948 [DOI: 10.3390/molecules27030948]
  68. Zhang Q.; Kuang G.; Li W.; Wang J.; Ren H.; Zhao Y.; Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett 2023,15(1),44 [DOI: 10.1007/s40820-023-01018-4]
  69. Zhu H.; Zhang L.; Tong S.; Lee C.M.; Deshmukh H.; Bao G.; Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat Biomed Eng 2018,3(2),126-136 [DOI: 10.1038/s41551-018-0318-7]
  70. Zhang M.; Hu W.; Cai C.; Wu Y.; Li J.; Dong S.; Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater Today Bio 2022,14,100223 [DOI: 10.1016/j.mtbio.2022.100223]
  71. Jahanbekam S.; Mozafari N.; Bagheri-Alamooti A.; Mohammadi-Samani S.; Daneshamouz S.; Heidari R.; Azarpira N.; Ashrafi H.; Azadi A.; Ultrasound-responsive hyaluronic acid hydrogel of hydrocortisone to treat osteoarthritis. Int J Biol Macromol 2023,240,124449 [DOI: 10.1016/j.ijbiomac.2023.124449]
  72. Khan D.; Qindeel M.; Ahmed N.; Asad M.I.; Shah K.; Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis. Int J Pharm 2021,610,121242 [DOI: 10.1016/j.ijpharm.2021.121242]
  73. Franco P.; de Marco I.; Eudragit: A novel carrier for controlled drug delivery in supercritical antisolvent coprecipitation. Polymers 2020,12(1),234 [DOI: 10.3390/polym12010234]
  74. Liu Y.; Jin J.; Xu H.; Wang C.; Yang Y.; Zhao Y.; Han H.; Hou T.; Yang G.; Zhang L.; Wang Y.; Zhang W.; Liang Q.; Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy. Acta Biomater 2021,121,541-553 [DOI: 10.1016/j.actbio.2020.11.027]
  75. Kaul S.; Nagaich U.; Verma N.; Preclinical assessment of nanostructured liquid crystalline particles for the management of bacterial keratitis: In vivo and pharmacokinetics study. Drug Deliv Transl Res 2021 [DOI: 10.1007/s13346-021-01072-8]
  76. Xiao Y.; Gu Y.; Qin L.; Chen L.; Chen X.; Cui W.; Li F.; Xiang N.; He X.; Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021,200,111581 [DOI: 10.1016/j.colsurfb.2021.111581]
  77. Haloi P.; Chawla S.; Konkimalla V.B.; Thermosensitive smart hydrogel of PEITC ameliorates the therapeutic efficacy in rheumatoid arthritis. Eur J Pharm Sci 2023,181,106367 [DOI: 10.1016/j.ejps.2022.106367]
  78. Carneiro M.F.H.; Machado A.R.T.; Antunes L.M.G.; Souza T.E.; Freitas V.A.; Oliveira L.C.A.; Rodrigues J.L.; Pereira M.C.; Barbosa F.; Gold-coated superparamagnetic iron oxide nanoparticles attenuate collagen-induced arthritis after magnetic targeting. Biol Trace Elem Res 2020,194(2),502-513 [DOI: 10.1007/s12011-019-01799-z]
  79. Patil S.B.; Inamdar S.Z.; Reddy K.R.; Raghu A.V.; Soni S.K.; Kulkarni R.V.; Novel biocompatible poly(acrylamide)-grafted-dextran hydrogels: Synthesis, characterization and biomedical applications. J Microbiol Methods 2019,159,200-210 [DOI: 10.1016/j.mimet.2019.03.009]
  80. Birajdar R.P.; Patil S.B.; Alange V.V.; Kulkarni R.V.; Synthesis and characterization of electrically responsive poly(acrylamide)-grafted-chondroitin sulfate hydrogel for transdermal drug delivery application. Int J Polym Mater 2019,69,148-157 [DOI: 10.1080/0091403720181552859]
  81. Birajdar R.P.; Patil S.B.; Alange V.V.; Kulkarni R.V.; Electro-responsive polyacrylamide-grafted-gum ghatti copolymer for transdermal drug delivery application. J Macromolec Sci Part A 2019,56(4),306-315 [DOI: 10.1080/10601325.2019.1574539]
  82. Patil S.B.; Inamdar S.Z.; Das K.K.; Akamanchi K.G.; Patil A.V.; Inamadar A.C.; Reddy K.R.; Raghu A.V.; Kulkarni R.V.; Tailor-made electrically-responsive poly(acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: Synthesis, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2020,56,101525 [DOI: 10.1016/j.jddst.2020.101525]
  83. Lei T.; Yang Z.; Xia X.; Chen Y.; Yang X.; Xie R.; Tong F.; Wang X.; Gao H.; A nanocleaner specifically penetrates the blood���brain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer���s disease. Acta Pharm Sin B 2021,11(12),4032-4044 [DOI: 10.1016/j.apsb.2021.04.022]
  84. Yuan X.; Tang R.; Jia Z.; Chen Y.; Liu J.; Liu Y.; Zn2+-responsive palladium nanoclusters synergistically manage Alzheimer���s disease through neuroprotection and inhibition of oxidative stress. Chem Eng J 2023,464,142679 [DOI: 10.1016/j.cej.2023.142679]
  85. Zhou H.; Gong Y.; Liu Y.; Huang A.; Zhu X.; Liu J.; Yuan G.; Zhang L.; Wei J.; Liu J.; Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer���s disease. Biomaterials 2020,237,119822 [DOI: 10.1016/j.biomaterials.2020.119822]
  86. Lin Y.W.; Fang C.H.; Yang C.Y.; Liang Y.J.; Lin F.H.; Investigating a curcumin-loaded PLGA-PEG-PLGA thermo-sensitive hydrogel for the prevention of alzheimer���s disease. Antioxidants 2022,11(4),727 [DOI: 10.3390/antiox11040727]
  87. Song Y.; Jing H.; Vong L.B.; Wang J.; Li N.; Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chin Chem Lett 2022,33(4),1705-1717 [DOI: 10.1016/j.cclet.2021.10.055]
  88. Lee J.H.; Yeo Y.; Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 2015,125,75-84 [DOI: 10.1016/j.ces.2014.08.046]
  89. Batty M.; Bennett M.R.; Yu E.; The role of oxidative stress in atherosclerosis. Cells 2022,11(23),3843 [DOI: 10.3390/cells11233843]
  90. Zhou Y.; Hou D.; Marigo C.C.; Bonelli J.; Rocas P.; Cheng F.; Yang X.; Rocas J.; Hamberg N.M.; Han J.; Redox-responsive polyurethane-polyurea nanoparticles targeting to aortic endothelium and atherosclerosis. iScience 2022,25(11),105390 [DOI: 10.1016/j.isci.2022.105390]
  91. Zhang R.; Liu R.; Liu C.; Pan L.; Qi Y.; Cheng J.; Guo J.; Jia Y.; Ding J.; Zhang J.; Hu H.; A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials 2020,230,119605 [DOI: 10.1016/j.biomaterials.2019.119605]
  92. Zhao R.; Ning X.; Wang M.; Wang H.; Xing G.; Wang L.; Lu C.; Yu A.; Wang Y.; A ROS-responsive simvastatin nano-prodrug and its fibronectin-targeted co-delivery system for atherosclerosis treatment. ACS Appl Mater Interfaces 2022,14(22),25080-25092 [DOI: 10.1021/acsami.2c02354]
  93. Li J.; Li W.; Zou D.; Kou F.; Hou Y.; Yasin A.; Zhang K.; Comparison of conjugating chondroitin sulfate A and B on amine-rich surface: For deeper understanding on directing cardiovascular cells fate. Compos, Part B Eng 2022,228,109430 [DOI: 10.1016/j.compositesb.2021.109430]
  94. Gao Q.; Lee J.S.; Kim B.S.; Gao G.; Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine. IntJ Bioprint 2022,9(1),638 [DOI: 10.18063/ijb.v9i1.638]
  95. Gori M.; Giannitelli S.M.; Torre M.; Mozetic P.; Abbruzzese F.; Trombetta M.; Traversa E.; Moroni L.; Rainer A.; Biofabrication of hepatic constructs by 3D bioprinting of a cell���laden thermogel: An effective tool to assess drug���induced hepatotoxic response. Adv Healthc Mater 2020,9(21),2001163 [DOI: 10.1002/adhm.202001163]
  96. Xie M.; Su J.; Zhou S.; Li J.; Zhang K.; Application of hydrogels as three-dimensional bioprinting ink for tissue engineering. Gels 2023,9(2),88 [DOI: 10.3390/gels9020088]
  97. Habibi M.; Foroughi S.; Karamzadeh V.; Packirisamy M.; Direct sound printing. Nature Communications 2022,13,1-11 [DOI: 10.1038/s41467-022-29395-1]
  98. Guo Z.; Dong L.; Xia J.; Mi S.; Sun W.; 3D printing unique nanoclay���incorporated double���network hydrogels for construction of complex tissue engineering scaffolds. Adv Healthc Mater 2021,10(11),2100036 [DOI: 10.1002/adhm.202100036]
  99. Mantha S.; Pillai S.; Khayambashi P.; Upadhyay A.; Zhang Y.; Tao O.; Pham H.M.; Tran S.D.; Smart hydrogels in tissue engineering and regenerative medicine. Materials 2019,12(20),3323 [DOI: 10.3390/ma12203323]
  100. Wei X.; Chen S.; Xie T.; Chen H.; Jin X.; Yang J.; Sahar S.; Huang H.; Zhu S.; Liu N.; Yu C.; Zhu P.; Wang W.; Zhang W.; An MMP-degradable and conductive hydrogel to stabilize HIF-1�� for recovering cardiac functions. Theranostics 2022,12(1),127-142 [DOI: 10.7150/thno.63481]
  101. Li Z.; Zhu D.; Hui Q.; Bi J.; Yu B.; Huang Z.; Hu S.; Wang Z.; Caranasos T.; Rossi J.; Li X.; Cheng K.; Wang X.; Injection of ROS���responsive hydrogel loaded with basic fibroblast growth factor into the pericardial cavity for heart repair. Adv Funct Mater 2021,31(15),2004377 [DOI: 10.1002/adfm.202004377]
  102. Ghuman H.; Massensini A.R.; Donnelly J.; Kim S.M.; Medberry C.J.; Badylak S.F.; Modo M.; ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials 2016,91,166-181 [DOI: 10.1016/j.biomaterials.2016.03.014]
  103. Ni X.; Xing X.; Deng Y.; Li Z.; Applications of stimuli-responsive hydrogels in bone and cartilage regeneration. Pharmaceutics 2023,15(3),982 [DOI: 10.3390/pharmaceutics15030982]
  104. Saravanan S.; Vimalraj S.; Anuradha D.; Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Biomed Pharmacother 2018,107,908-917 [DOI: 10.1016/j.biopha.2018.08.072]
  105. Yuan Z.; Memarzadeh K.; Stephen A.S.; Allaker R.P.; Brown R.A.; Huang J.; Development of a 3D collagen model for the in vitro evaluation of magnetic-assisted osteogenesis. Sci Rep 2018,8(1),16270 [DOI: 10.1038/s41598-018-33455-2]
  106. Bordat A.; Boissenot T.; Nicolas J.; Tsapis N.; Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019,138,167-192 [DOI: 10.1016/j.addr.2018.10.005]
  107. Shu X.; A review of thermoresponsive drug delivery systems based on LCST/UCST polymer nanofibers. J Phys Conf Ser 2023,2539(1),012032 [DOI: 10.1088/1742-6596/2539/1/012032]
  108. Ganguly P.; Breen A.; Pillai S.C.; Toxicity of Nanomaterials: Exposure, pathways, assessment, and recent advances. ACS Biomater Sci Eng 2018,4(7),2237-2275 [DOI: 10.1021/acsbiomaterials.8b00068]
  109. Sairam A.B.; Sanmugam A.; Pushparaj A.; Mahesh Kumar G.; Sundarapandian N.; Balaji S.; Toxicity of polymeric nanodrugs as drug carriers. ACS Chem Health Saf 2023,30(5),236-250 [DOI: 10.1021/acs.chas.3c00008]
  110. Azarnezhad A.; Samadian H.; Jaymand M.; Sobhani M.; Ahmadi A.; Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol 2020,50(2),148-176 [DOI: 10.1080/10408444.2020.1719974]
  111. Dokka S.; Toledo D.; Shi X.; Castranova V.; Rojanasakul Y.; Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 2000,17(5),521-525 [DOI: 10.1023/A]
  112. Knudsen K.B.; Northeved H.; Kumar E.K.P.; Permin A.; Gjetting T.; Andresen T.L.; Larsen S.; Wegener K.M.; Lykkesfeldt J.; Jantzen K.; Loft S.; M��ller P.; Roursgaard M.; In vivo toxicity of cationic micelles and liposomes. Nanomedicine 2015,11(2),467-477 [DOI: 10.1016/j.nano.2014.08.004]
  113. Shah V.; Taratula O.; Garbuzenko O.B.; Patil M.L.; Savla R.; Zhang M.; Minko T.; Genotoxicity of different nanocarriers: Possible modifications for the delivery of nucleic acids. Curr Drug Discov Technol 2013,10(1),8-15 [DOI: 10.2174/1570163811310010003]
  114. Mahmoudi M.; Sant S.; Wang B.; Laurent S.; Sen T.; Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011,63(1-2),24-46 [DOI: 10.1016/j.addr.2010.05.006]
  115. Feng Q.; Liu Y.; Huang J.; Chen K.; Huang J.; Xiao K.; Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 2018,8(1),2082 [DOI: 10.1038/s41598-018-19628-z]
  116. Ankamwar B.; Lai T.C.; Huang J.H.; Liu R.S.; Hsiao M.; Chen C.H.; Hwu Y.K.; Biocompatibility of Fe 3 O 4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 2010,21(7),075102 [DOI: 10.1088/0957-4484/21/7/075102]
  117. Veranth J.M.; Kaser E.G.; Veranth M.M.; Koch M.; Yost G.S.; Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 2007,4(1),2 [DOI: 10.1186/1743-8977-4-2]
  118. Singh N.; Jenkins G.J.S.; Asadi R.; Doak S.H.; Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 2010,1(1),5358 [DOI: 10.3402/nano.v1i0.5358]
  119. Hao X.; Hu X.; Zhang C.; Chen S.; Li Z.; Yang X.; Liu H.; Jia G.; Liu D.; Ge K.; Liang X.J.; Zhang J.; Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite. ACS Nano 2015,9(10),9614-9625 [DOI: 10.1021/nn507485j]
  120. Shen D.; Yang J.; Li X.; Zhou L.; Zhang R.; Li W.; Chen L.; Wang R.; Zhang F.; Zhao D.; Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett 2014,14(2),923-932 [DOI: 10.1021/nl404316v]
  121. Ahmadi S.; Rabiee N.; Bagherzadeh M.; Elmi F.; Fatahi Y.; Farjadian F.; Baheiraei N.; Nasseri B.; Rabiee M.; Dastjerd N.T.; Valibeik A.; Karimi M.; Hamblin M.R.; Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 2020,34,100914 [DOI: 10.1016/j.nantod.2020.100914]
  122. Stimuli-responsive nanoparticles for biomedical applications. 2022
  123. Bottlebrush copolymers and uses thereof. 2021
  124. Metal organic structure capable of controlling guest releasestimulus-responsive polymer composite. 2019
  125. Formulation of solid nano-sized particles in a gel-forming system. 2019
  126. Therapeutic uses of selected pyrrolopyrimidine compounds with anti-mer tyrosine kinase activity. 2018
  127. Temperature- and pH-responsive polymer compositions. 2010
  128. Smart Polymers Market Size USD 10.9 Million by 2030. Available from: https://www.vantagemarketresearch.com/industry-report/smart-polymers-market-1203#:~:text=Global%20Smart%20Poly-mers%20market%20is,the%20Smart%20Polymers%20market%20growth (Accessed on: June 14, 2023).
  129. Global Smart Polymer Market Size USD 10.08 Billion 2030. Available from: https://www.custommarketinsights.com/press-releases/smart-polymer-market-size/ (Accessed on: June 14, 2023).
  130. Smart Polymers Market Size Report, 2022-2027. Available from: https://www.industryarc.com/Research/Smart-Polymers-Market-Research-500233 (Accessed on: June 14, 2023).
  131. Biopolymers and Bioplastics Market Share, Growth, Scope, Trends and Future Opportunities 2032: SPER Market Research. Available from: https://www.sperresearch.com/report-store/biopolymer-and-bioplastics-market.aspx (Accessed on: June 14, 2023).
  132. 2030, Physical Stimuli Responsive Polymers Market by Top Players and Regions - MarketWatch. Available from: https://www.marketwatch.com/press-release/2030-physical-stimuli-responsive-polymers-market-by-top-players-and-regions-2023-06-04 (Accessed on: June 14, 2023).
  133. ALT-P7 Available from: http://www.alteogen.com/en/pipeline_3_1/ (Accessed on: June 14, 2023).
  134. Our Science: Relay Therapeutics Available from: https://relaytx.com/pipeline/ (Accessed on: June 14, 2023).
  135. A Study of RG-012 in subjects with alport syndrome. 2022

MeSH Term

Humans
Drug Delivery Systems
Animals
Drug Liberation
Neoplasms
Hydrogen-Ion Concentration
Tissue Engineering

Word Cloud

Created with Highcharts 10.0.0drugdeliverysystemsSRDDSstimuli-responsiveDDSarticleIntelligentrecentreleasevarioustreatmentdiseasesmarketoverviewyearsescalatinginterestdueabilityrevolutionizetherapeuticsSRDDSsoffermultitudebenefitscomparisonconventionalincludingspatiotemporalcontroltargetedimprovedtherapeuticefficacydevelopmentclassespH-responsivetemperature-responsivephoto-responsiveredoxresponsivepropelledadvancesmaterialssciencenanotechnologybiotechnologyexploitspecificenvironmentalphysiologicalcuestriggerpreciselycontrolledmannermakinghighlypromisingreviewin-depthexplorationprinciplesmechanismsapplicationscontextdiversepathologiescancerarthritisAlzheimer'sdiseaseatherosclerosistissueengineeringprovidedFurthermoredelvesdiscussionpatentsprogressresearchclinicaltrialsOverallunderscorestransformativepotentialenablingpersonalizedpreciseeffectiveabove-mentionedDrugDelivery:PioneeringStimuli-ResponsiveSystemsRevolutionizeDiseaseManagement-In-depthExplorationChemical-responsivePolymersbiomaterialsPhysicalresponsiveStimuli-responsiveendogenous/exogenous

Similar Articles

Cited By