Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog.

Katie C Coate, Christopher J Ramnanan, Marta Smith, Jason J Winnick, Guillaume Kraft, Jose Irimia-Dominguez, Ben Farmer, E Patrick Donahue, Peter J Roach, Alan D Cherrington, Dale S Edgerton
Author Information
  1. Katie C Coate: Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States. ORCID
  2. Christopher J Ramnanan: Department of Innovation in Medical Education, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.
  3. Marta Smith: Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States.
  4. Jason J Winnick: Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States.
  5. Guillaume Kraft: Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States. ORCID
  6. Jose Irimia-Dominguez: Department of Molecular and Cellular Endocrinology, Beckman Research Institute, Duarte, California, United States.
  7. Ben Farmer: Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States.
  8. E Patrick Donahue: Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States.
  9. Peter J Roach: Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States.
  10. Alan D Cherrington: Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States. ORCID
  11. Dale S Edgerton: Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States. ORCID

Abstract

Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development. Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.

Keywords

References

  1. Annu Rev Nutr. 2016 Jul 17;36:389-415 [PMID: 27146014]
  2. Anal Biochem. 1968 Oct 24;25(1):486-99 [PMID: 5704765]
  3. Physiol Rep. 2022 May;10(9):e15263 [PMID: 35569125]
  4. Life Metab. 2023 Aug;2(4): [PMID: 37383542]
  5. Cell Rep. 2015 Jul 21;12(3):495-510 [PMID: 26166562]
  6. Eur J Biochem. 1983 Nov 15;136(3):609-16 [PMID: 6641732]
  7. Am J Physiol. 1989 May;256(5 Pt 1):E651-61 [PMID: 2655471]
  8. Diabetes. 2002 Jun;51(6):1663-71 [PMID: 12031951]
  9. Trends Endocrinol Metab. 2015 Jul;26(7):357-66 [PMID: 26059707]
  10. Diabetes. 2003 Jun;52(6):1333-9 [PMID: 12765941]
  11. J Clin Invest. 2012 Jan;122(1):4-12 [PMID: 22214853]
  12. Diabetes. 2010 Nov;59(11):2697-707 [PMID: 20705776]
  13. Am J Med. 2010 Mar;123(3 Suppl):S38-48 [PMID: 20206731]
  14. FEBS Lett. 1979 Oct 15;106(2):284-8 [PMID: 115716]
  15. Cold Spring Harb Perspect Med. 2014 May 01;4(5): [PMID: 24789872]
  16. Diabetes. 2013 Dec;62(12):4070-82 [PMID: 23990365]
  17. J Clin Invest. 1977 Feb;59(2):299-307 [PMID: 833277]
  18. Ulus Cerrahi Derg. 2014 Sep 01;30(3):153-9 [PMID: 25931917]
  19. Lancet. 1975 Jan 4;1(7897):14-6 [PMID: 46337]
  20. Cell Metab. 2011 Jul 6;14(1):9-19 [PMID: 21723500]
  21. Diabetes. 2004 Jan;53(1):32-40 [PMID: 14693695]
  22. Mol Pharmacol. 1974 May;10(3):381-8 [PMID: 4136603]
  23. Metabolism. 1996 Apr;45(4):481-5 [PMID: 8609835]
  24. J Biol Chem. 1984 May 25;259(10):6052-5 [PMID: 6202683]
  25. Am J Physiol. 1989 Jul;257(1 Pt 1):E108-17 [PMID: 2665514]
  26. Cell Metab. 2008 Nov;8(5):359-71 [PMID: 19046568]
  27. Diabetes. 1981 Mar;30(3):180-7 [PMID: 6110598]
  28. Nat Med. 2018 Jul;24(7):1058-1069 [PMID: 29867232]
  29. Comput Methods Programs Biomed. 2003 Jul;71(3):269-81 [PMID: 12799059]
  30. Diabetes. 1982 Oct;31(10):917-22 [PMID: 6759225]
  31. Diabetes. 2022 Sep 1;71(9):1842-1851 [PMID: 35657690]
  32. Metabolism. 1976 Nov;25(11 Suppl 1):1351-4 [PMID: 185493]
  33. Nat Med. 2013 Jun;19(6):674-5 [PMID: 23744146]
  34. Am J Physiol Endocrinol Metab. 2023 Feb 1;324(2):E199-E208 [PMID: 36652399]
  35. Nat Med. 2013 Jun;19(6):766-72 [PMID: 23685839]
  36. iScience. 2022 Oct 06;25(11):105296 [PMID: 36325048]
  37. FASEB J. 1997 Jun;11(7):544-58 [PMID: 9212078]
  38. J Clin Endocrinol Metab. 1991 Feb;72(2):308-15 [PMID: 1991802]
  39. Am J Physiol Endocrinol Metab. 2009 Mar;296(3):E415-21 [PMID: 19116373]
  40. J Clin Invest. 1974 Jan;53(1):190-7 [PMID: 4808635]
  41. Elife. 2023 Jan 24;12: [PMID: 36692000]
  42. Am J Physiol. 1982 Feb;242(2):E73-81 [PMID: 7039338]
  43. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  44. Metabolism. 1972 Oct;21(10):945-90 [PMID: 4342011]
  45. Diabetes. 2010 Jun;59(6):1302-11 [PMID: 20185816]
  46. J Endocr Soc. 2021 May 08;5(7):bvab088 [PMID: 34131611]
  47. Diabetes Metab Rev. 1987 Jan;3(1):127-61 [PMID: 3032540]
  48. Biochem J. 1998 Nov 15;336 ( Pt 1):19-31 [PMID: 9806880]
  49. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  50. J Biol Chem. 2000 Apr 7;275(14):10597-603 [PMID: 10744755]
  51. Diabetes Obes Metab. 2011 Oct;13 Suppl 1:118-25 [PMID: 21824265]
  52. Endocrinology. 2012 Mar;153(3):1039-48 [PMID: 22166985]
  53. Am J Physiol Endocrinol Metab. 2020 May 1;318(5):E779-E790 [PMID: 32208001]
  54. J Clin Endocrinol Metab. 2001 May;86(5):2085-9 [PMID: 11344211]
  55. Biochem J. 2012 Feb 1;441(3):763-87 [PMID: 22248338]
  56. Mol Metab. 2013 Nov 28;3(2):202-8 [PMID: 24634823]
  57. Annu Rev Nutr. 1996;16:179-203 [PMID: 8839925]
  58. Arch Biochem Biophys. 1975 Feb;166(2):575-83 [PMID: 1119810]
  59. Annu Rev Biochem. 1988;57:755-83 [PMID: 3052289]
  60. Mol Cell Endocrinol. 2013 Feb 25;366(2):152-62 [PMID: 22796337]
  61. J Clin Invest. 1979 Jul;64(1):62-71 [PMID: 36413]
  62. Biochem J. 2008 Aug 15;414(1):1-18 [PMID: 18651836]
  63. Cancer Metab. 2013 Feb 04;1(1):8 [PMID: 24280138]
  64. Diabetes. 1979 Jun;28(6):533-6 [PMID: 446911]
  65. J Clin Invest. 2009 Aug;119(8):2412-22 [PMID: 19662685]
  66. Diabetes. 2001 Aug;50(8):1872-82 [PMID: 11473051]
  67. Cell Metab. 2012 May 2;15(5):739-51 [PMID: 22503562]
  68. Nature. 2020 Mar;579(7798):279-283 [PMID: 32132708]
  69. J Biol Chem. 1987 Feb 5;262(4):1670-3 [PMID: 2948958]
  70. Cell Metab. 2017 Jun 6;25(6):1362-1373.e5 [PMID: 28591638]
  71. Biochem J. 2004 Jan 1;377(Pt 1):195-204 [PMID: 13678417]
  72. FASEB J. 1994 Apr 1;8(6):414-9 [PMID: 8168691]
  73. J Clin Invest. 2011 Sep;121(9):3713-23 [PMID: 21865644]
  74. J Clin Invest. 2010 Dec;120(12):4425-35 [PMID: 21084754]
  75. Biochem J. 2002 Mar 15;362(Pt 3):513-32 [PMID: 11879177]
  76. Diabetes. 2018 Sep;67(9):1773-1782 [PMID: 29925501]
  77. Diabetologia. 2012 May;55(5):1458-68 [PMID: 22318544]
  78. Mol Metab. 2023 May;71:101703 [PMID: 36906067]

Grants

  1. SP-60-AM20593/HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  2. P60 DK020593/NIDDK NIH HHS
  3. R01-DK18243/HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  4. P30 DK020593/NIDDK NIH HHS
  5. R01 DK018243/NIDDK NIH HHS
  6. DK20593/HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

MeSH Term

Humans
Dogs
Animals
Glucagon
Insulin
Transcriptome
Glucose
Liver
Gluconeogenesis
Blood Glucose

Chemicals

Glucagon
Insulin
Glucose
Blood Glucose

Word Cloud

Created with Highcharts 10.0.0hepaticglucoseglucagonsustainedmetabolicfluxbasalactivationGlucagonrapidlyproductioneffectstudycontrolgroupG6PdueliverstimulatesHGPtimemolecularconsciousinfusedrapidminincreasecAMPhcontinuedglycogenglycogenolysisgeneexpressiongenesinvolvedsignalingeffectsdogprofoundlyreasonsunclearnormallywaneshoursdespiteplasmalevelscharacterizedcourseglucagon-mediatedeventsrelevanceliversdogseitherhepato-portalveinsixfoldratepresencesomatostatininsulinmaintainedlevelstudiesoneremainedwhereasmatchhyperglycemiaoccurredhyperglucagonemicElevatedcaused30largely4elevationglucose-6-phosphatedeactivationphosphorylasesynthaseactivitiesrespectivelyNetincreasedpeaking15cAMP/PKApathwayslowlyreturnedbaselinenext3lineallostericinhibitionGlucagon'sstimulatoryrelativehyperglycemicPKAHepaticgluconeogeniclackglucagon'ssubstratesupplyGlobalprofilinghighlightedglucagon-regulatedcellularrespirationprocesseswelldownregulationextracellularmatrixassemblydevelopmenttransientlinkschangesoccurresponserisedemonstratingstrengthtranslationalmodelcouplefindingssmallanimalshumansadditionclarifiesmetabolismIntegrationprofiles

Similar Articles

Cited By