Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound.

Zhen Xu, Tatiana D Khokhlova, Clifford S Cho, Vera A Khokhlova
Author Information
  1. Zhen Xu: Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; email: zhenx@umich.edu.
  2. Tatiana D Khokhlova: Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.
  3. Clifford S Cho: Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.
  4. Vera A Khokhlova: Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia.

Abstract

Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.

Keywords

References

  1. J Ther Ultrasound. 2015 Aug 13;3:14 [PMID: 26269744]
  2. Br J Neurosurg. 2024 Dec;38(6):1390-1393 [PMID: 36803611]
  3. Ultrasound Med Biol. 2017 Oct;43(10):2302-2317 [PMID: 28716432]
  4. Ultrasound Med Biol. 2017 Jun;43(6):1237-1251 [PMID: 28318889]
  5. Ultrasound Med Biol. 2019 May;45(5):1056-1080 [PMID: 30922619]
  6. IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2766-2775 [PMID: 35617178]
  7. Phys Med Biol. 2023 Jan 05;68(2): [PMID: 36595243]
  8. J Ultrasound Med. 2020 Jun;39(6):1057-1067 [PMID: 31830312]
  9. JACC Basic Transl Sci. 2017 Aug;2(4):372-383 [PMID: 29367953]
  10. Indian J Thorac Cardiovasc Surg. 2019 Apr;35(2):196-202 [PMID: 33061005]
  11. Circulation. 2021 Mar 2;143(9):968-970 [PMID: 33486971]
  12. Int J Hyperthermia. 2019;36(1):130-138 [PMID: 30676126]
  13. Phys Med Biol. 2014 Jan 20;59(2):253-70 [PMID: 24351722]
  14. Ultrason Sonochem. 2019 May;53:164-177 [PMID: 30686603]
  15. Int J Hyperthermia. 2015 Mar;31(2):145-62 [PMID: 25707817]
  16. J Acoust Soc Am. 2011 Oct;130(4):1888-98 [PMID: 21973343]
  17. IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):251-65 [PMID: 24474132]
  18. Ultrasound Med Biol. 2023 Jan;49(1):62-71 [PMID: 36207225]
  19. Urology. 2009 Oct;74(4):932-7 [PMID: 19628261]
  20. Phys Med Biol. 2017 Feb 21;62(4):1269-1290 [PMID: 27995900]
  21. Sci Rep. 2019 Jun 21;9(1):9050 [PMID: 31227775]
  22. Int J Hyperthermia. 2018 Dec;34(8):1213-1224 [PMID: 29429375]
  23. Ultrasound Med Biol. 2018 Sep;44(9):1996-2008 [PMID: 29941214]
  24. Theranostics. 2021 Jan 1;11(2):540-554 [PMID: 33391491]
  25. Ultrasound Med Biol. 2023 May;49(5):1182-1193 [PMID: 36759271]
  26. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2073-2085 [PMID: 30281443]
  27. Urology. 2010 Jan;75(1):207-11 [PMID: 19931897]
  28. Ultrasound Med Biol. 2016 Aug;42(8):1890-902 [PMID: 27140521]
  29. Radiology. 2017 Apr;283(1):158-167 [PMID: 27802108]
  30. J Acoust Soc Am. 2006 Mar;119(3):1432-40 [PMID: 16583887]
  31. Cancers (Basel). 2021 Nov 14;13(22): [PMID: 34830852]
  32. Front Immunol. 2023 Jan 23;14:1012799 [PMID: 36756111]
  33. J Endourol. 2011 Feb;25(2):341-4 [PMID: 21091223]
  34. Eur Heart J Cardiovasc Imaging. 2023 Jun 21;24(7):e108-e109 [PMID: 37158997]
  35. IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Aug;60(8):1683-98 [PMID: 25004539]
  36. Urology. 2018 Apr;114:184-187 [PMID: 29330000]
  37. IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Sep;61(9):1559-74 [PMID: 25167156]
  38. Ultrasound Med Biol. 2013 Mar;39(3):449-65 [PMID: 23380152]
  39. PLoS One. 2017 Mar 16;12(3):e0173867 [PMID: 28301597]
  40. Phys Med Biol. 2018 Dec 04;63(23):235023 [PMID: 30511651]
  41. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jun;65(6):1017-1024 [PMID: 29856719]
  42. J Vasc Interv Radiol. 2011 Mar;22(3):369-77 [PMID: 21194969]
  43. J Vasc Interv Radiol. 2019 Aug;30(8):1293-1302 [PMID: 31130365]
  44. Ultrasound Med Biol. 2010 Feb;36(2):250-67 [PMID: 20018433]
  45. Phys Med Biol. 2012 Dec 7;57(23):8061-78 [PMID: 23159812]
  46. Ultrasound Med Biol. 2016 Sep;42(9):2232-44 [PMID: 27318864]
  47. Phys Med Biol. 2022 Jun 10;67(12): [PMID: 35609619]
  48. IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Feb;64(2):374-390 [PMID: 27775904]
  49. BJU Int. 2014 Mar;113(3):498-503 [PMID: 24176120]
  50. Ultrasound Med Biol. 2013 Apr;39(4):611-9 [PMID: 23415285]
  51. Ultrasound Med Biol. 2006 Jan;32(1):115-29 [PMID: 16364803]
  52. Magn Reson Med. 2016 Nov;76(5):1486-1493 [PMID: 26599823]
  53. Int J Hyperthermia. 2021;38(1):798-804 [PMID: 34037501]
  54. Catheter Cardiovasc Interv. 2011 Mar 1;77(4):580-8 [PMID: 20853366]
  55. Ultrasound Med Biol. 2015 Jun;41(6):1651-67 [PMID: 25766571]
  56. Appl Plant Sci. 2023 Jan 28;11(1):e11510 [PMID: 36818781]
  57. Ultrasound Med Biol. 2013 Aug;39(8):1398-409 [PMID: 23683406]
  58. Ultrasound Med Biol. 2017 Dec;43(12):2834-2847 [PMID: 28935135]
  59. Ultrasonics. 2023 Aug;133:107029 [PMID: 37207594]
  60. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2917-2929 [PMID: 33755563]
  61. Ultrasound Med Biol. 2020 Feb;46(2):336-349 [PMID: 31785841]
  62. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2131-2140 [PMID: 30222557]
  63. J Acoust Soc Am. 2011 Nov;130(5):3498-510 [PMID: 22088025]
  64. J Neurosurg. 2018 Oct 12;131(4):1331-1338 [PMID: 30485186]
  65. Acta Biomed. 2021 Sep 02;92(4):e2021191 [PMID: 34487074]
  66. Ultrasound Med Biol. 2023 Aug;49(8):1882-1891 [PMID: 37277304]
  67. J Endourol. 2011 Sep;25(9):1531-5 [PMID: 21815807]
  68. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2965-2980 [PMID: 33950839]
  69. Cardiovasc Intervent Radiol. 2020 Nov;43(11):1695-1701 [PMID: 32676957]
  70. IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jun;51(6):726-36 [PMID: 15244286]
  71. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):995-1005 [PMID: 19750596]
  72. J Acoust Soc Am. 2008 Oct;124(4):2406-20 [PMID: 19062878]
  73. Ultrasound Med Biol. 2016 Oct;42(10):2466-77 [PMID: 27401956]
  74. IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):569-75 [PMID: 17375825]
  75. Nat Rev Cancer. 2012 Dec;12(12):860-75 [PMID: 23151605]
  76. IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3255-3269 [PMID: 36197870]
  77. Phys Med Biol. 2019 May 29;64(11):115012 [PMID: 30995623]
  78. Ultrasound Med Biol. 2020 Aug;46(8):2007-2016 [PMID: 32444137]
  79. Phys Med Biol. 2020 Oct 26;65(21):215004 [PMID: 33104523]
  80. IEEE Trans Med Imaging. 2018 Jan;37(1):106-115 [PMID: 28783627]
  81. Ultrasonics. 2023 May;131:106934 [PMID: 36773482]
  82. Phys Med Biol. 2019 Nov 15;64(22):225001 [PMID: 31639778]
  83. Ultrasound Med Biol. 2021 Mar;47(3):603-619 [PMID: 33250219]
  84. J Endourol. 2007 Oct;21(10):1159-66 [PMID: 17949317]
  85. Nature. 2019 May;569(7755):270-274 [PMID: 31043744]
  86. Ultrasound Med Biol. 2019 Jan;45(1):137-147 [PMID: 30340920]
  87. Radiology. 2011 Apr;259(1):39-56 [PMID: 21436096]
  88. Neurosurgery. 2020 Mar 1;86(3):429-436 [PMID: 30924501]
  89. Int J Hyperthermia. 2022;39(1):1115-1123 [PMID: 36002243]
  90. IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1342-55 [PMID: 26168180]
  91. J Immunother Cancer. 2020 Jan;8(1): [PMID: 31940590]
  92. Phys Med Biol. 2017 Aug 18;62(17):7167-7180 [PMID: 28741596]
  93. Cancer Discov. 2019 Dec;9(12):1673-1685 [PMID: 31554642]
  94. Int J Hyperthermia. 2023;40(1):2155077 [PMID: 36603842]
  95. Ultrasound Med Biol. 2020 May;46(5):1244-1257 [PMID: 32111458]
  96. Ultrasonics. 2023 Jul;132:106993 [PMID: 37099937]
  97. Ultrasound Med Biol. 2016 Aug;42(8):1958-67 [PMID: 27184248]
  98. IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2955-2964 [PMID: 35981067]
  99. Cancers (Basel). 2022 Mar 22;14(7): [PMID: 35406383]
  100. Ultrasound Med Biol. 2015 Jun;41(6):1500-17 [PMID: 25813532]
  101. J R Soc Interface. 2021 Jul;18(180):20210266 [PMID: 34229458]
  102. Ultrasound Med Biol. 2016 Aug;42(8):1903-18 [PMID: 27166017]
  103. J Urol. 2008 Mar;179(3):1150-4 [PMID: 18206166]
  104. Ultrasound Med Biol. 2009 Feb;35(2):245-55 [PMID: 19027218]
  105. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2896-2905 [PMID: 33507869]
  106. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8161-6 [PMID: 24843132]
  107. IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1178-1191 [PMID: 31976885]
  108. Pediatr Cardiol. 2012 Jan;33(1):83-9 [PMID: 21910018]
  109. Ultrasound Med Biol. 2017 Jul;43(7):1378-1390 [PMID: 28457630]
  110. Bioengineering (Basel). 2023 Feb 20;10(2): [PMID: 36829770]
  111. IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jun;70(6):521-537 [PMID: 37030675]
  112. IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1542-1557 [PMID: 28809681]
  113. NMR Biomed. 2016 Jun;29(6):721-31 [PMID: 27061290]
  114. J Urol. 2011 Apr;185(4):1484-9 [PMID: 21334667]
  115. Ultrasound Med Biol. 2016 Jul;42(7):1491-8 [PMID: 27126244]
  116. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2837-2852 [PMID: 33877971]
  117. Int J Hyperthermia. 2021;38(1):561-575 [PMID: 33827375]
  118. Theranostics. 2022 Jan 1;12(1):362-378 [PMID: 34987650]
  119. J Acoust Soc Am. 2016 Mar;139(3):1319-32 [PMID: 27036269]
  120. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):3001-3005 [PMID: 34310299]
  121. Phys Med Biol. 2018 Mar 08;63(5):055013 [PMID: 29424711]
  122. IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jun;59(6):1167-81 [PMID: 22711412]
  123. Ultrasound Med Biol. 2021 Dec;47(12):3435-3446 [PMID: 34462159]
  124. J Acoust Soc Am. 2019 Sep;146(3):1786 [PMID: 31590513]
  125. Sci Rep. 2019 Dec 27;9(1):20176 [PMID: 31882870]
  126. BME Front. 2020;2020: [PMID: 34327513]
  127. Ultrasound Med Biol. 2022 Jan;48(1):98-110 [PMID: 34615611]
  128. Ultrasound Med Biol. 2009 Dec;35(12):1982-94 [PMID: 19854563]
  129. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2987-3000 [PMID: 33956631]
  130. Ultrasound Med Biol. 2014 May;40(5):956-64 [PMID: 24462160]
  131. J Magn Reson Imaging. 2009 Feb;29(2):404-11 [PMID: 19161196]
  132. Cardiovasc Intervent Radiol. 2021 Oct;44(10):1643-1650 [PMID: 34244841]
  133. Ultrasound Med Biol. 2018 Oct;44(10):2089-2104 [PMID: 30054023]
  134. Phys Med Biol. 2015 Mar 21;60(6):2271-92 [PMID: 25715732]
  135. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2942-2952 [PMID: 33460375]
  136. J Acoust Soc Am. 2009 Apr;125(4):2420-31 [PMID: 19354416]
  137. IEEE Trans Biomed Eng. 2022 Jul 14;PP: [PMID: 35834467]
  138. IEEE Trans Ultrason Ferroelectr Freq Control. 2016 May 10;63(8):1064-1077 [PMID: 28113706]
  139. Phys Med Biol. 2016 Jul 21;61(14):5253-74 [PMID: 27353199]
  140. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2953-2964 [PMID: 33856990]
  141. Med Phys. 2015 Jul;42(7):4385-400 [PMID: 26133635]
  142. Urology. 2012 Sep;80(3):724-9 [PMID: 22925247]
  143. J Urol. 2012 Nov;188(5):1957-64 [PMID: 22999534]
  144. Ultrasound Med Biol. 2018 Mar;44(3):602-612 [PMID: 29329687]
  145. Circulation. 2010 Feb 16;121(6):742-9 [PMID: 20124126]
  146. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1496-1510 [PMID: 33156788]

Grants

  1. R01 CA211217/NCI NIH HHS
  2. R01 CA258581/NCI NIH HHS
  3. R01 EB008998/NIBIB NIH HHS
  4. R01 HL141967/NHLBI NIH HHS
  5. R01 EB034399/NIBIB NIH HHS
  6. R01 DK091267/NIDDK NIH HHS
  7. R01 EB037129/NIBIB NIH HHS
  8. I01 BX001619/BLRD VA
  9. R21 NS093121/NINDS NIH HHS
  10. R01 NS108042/NINDS NIH HHS
  11. R21 CA260684/NCI NIH HHS
  12. R01 EB028309/NIBIB NIH HHS
  13. R01 EB032772/NIBIB NIH HHS

MeSH Term

Humans
Animals
High-Intensity Focused Ultrasound Ablation
Male
Neoplasms
Equipment Design
Liver Neoplasms

Word Cloud

Created with Highcharts 10.0.0ultrasoundfocusedtechnologyhistotripsyclinicalHistotripsytissueusinghigh-intensityimagingapplicationstumorsbioeffectsrelativelynewtherapeuticmechanicallyliquefysubcellulardebrishigh-amplitudepulsescontrastconventionalthermaltherapyspecificadvantages:capacityreal-timemonitoringdiminishedheatsinkeffectsresultinglesionssharpmarginseffectiveremovaltreatedtissue-selectivefeaturepreservecrucialstructuresimmunostimulationevaluatedsmalllargeanimalmodelstreatingcancerthrombosishematomasabscessesbiofilmsenhancingtumor-specificimmuneresponseneurologicalrecentlyapprovedUSFoodDrugAdministrationtreatlivertrialsundertakenbenignprostatichyperplasiarenalreviewoutlinesphysicalprinciplesvarioustypespresentsmajorparameterscorrespondinghardwaresoftwaremethodsdiscussespromisingpreclinicalHistotripsy:MethodMechanicalTissueAblationUltrasoundHIFUboilingcavitationsurgerymechanicalnonlinearwaves

Similar Articles

Cited By