Cis-regulatory control of mammalian Trps1 gene expression.

Muhammad Abrar, Shahid Ali, Irfan Hussain, Hizran Khatoon, Fatima Batool, Shakira Ghazanfar, Dylan Corcoran, Yasuhiko Kawakami, Amir Ali Abbasi
Author Information
  1. Muhammad Abrar: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
  2. Shahid Ali: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
  3. Irfan Hussain: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
  4. Hizran Khatoon: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
  5. Fatima Batool: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
  6. Shakira Ghazanfar: National Institute for Genomics Advanced Biotechnology, National Agriculture Research Centre (NARC), Islamabad, Pakistan.
  7. Dylan Corcoran: Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
  8. Yasuhiko Kawakami: Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
  9. Amir Ali Abbasi: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. ORCID

Abstract

Trps1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the Trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.

Keywords

References

  1. Development. 1997 Aug;124(15):2945-60 [PMID: 9247337]
  2. Cell Syst. 2018 Feb 28;6(2):256-258.e1 [PMID: 29428417]
  3. PLoS One. 2007 Apr 11;2(4):e366 [PMID: 17426814]
  4. Genesis. 2016 Jul;54(7):379-88 [PMID: 27257806]
  5. Dev Cell. 2009 Dec;17(6):836-48 [PMID: 20059953]
  6. Genes Dev. 2020 Feb 1;34(3-4):179-193 [PMID: 31879358]
  7. Genome Res. 2003 Apr;13(4):721-31 [PMID: 12654723]
  8. Science. 2006 Dec 22;314(5807):1892 [PMID: 17185593]
  9. Genome Biol. 2007;8(2):R15 [PMID: 17274809]
  10. Bioinformatics. 1998;14(1):48-54 [PMID: 9520501]
  11. Development. 2004 Nov;131(22):5703-16 [PMID: 15509770]
  12. Mech Dev. 2002 Dec;119 Suppl 1:S117-20 [PMID: 14516672]
  13. Mol Biol Evol. 2010 Oct;27(10):2322-32 [PMID: 20494938]
  14. Int J Mol Sci. 2022 Aug 31;23(17): [PMID: 36077295]
  15. Development. 2005 Apr;132(7):1567-77 [PMID: 15753212]
  16. Nat Genet. 2016 Apr;48(4):427-37 [PMID: 26950095]
  17. Nature. 2018 Feb 8;554(7691):239-243 [PMID: 29420474]
  18. Hum Mol Genet. 2003 Jun 1;12(11):1349-58 [PMID: 12761050]
  19. Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1021-1026 [PMID: 29255029]
  20. Am J Hum Genet. 2001 Jan;68(1):81-91 [PMID: 11112658]
  21. Nat Genet. 2018 Apr;50(4):504-509 [PMID: 29556077]
  22. Dev Biol. 2007 Dec 15;312(2):572-81 [PMID: 17997399]
  23. EMBO J. 2001 Apr 2;20(7):1715-25 [PMID: 11285235]
  24. Genetics. 2022 Apr 4;220(4): [PMID: 35166825]
  25. Dev Dyn. 2015 May;244(5):681-92 [PMID: 25715918]
  26. Dev Dyn. 2021 May;250(5):669-683 [PMID: 33381902]
  27. PLoS Biol. 2005 Jan;3(1):e7 [PMID: 15630479]
  28. J Cell Commun Signal. 2007 Dec;1(3-4):175-83 [PMID: 18600477]
  29. Bioinformatics. 2000 Nov;16(11):1046-7 [PMID: 11159318]
  30. Front Physiol. 2014 Jan 21;5:7 [PMID: 24478720]
  31. Nature. 2006 Nov 23;444(7118):499-502 [PMID: 17086198]
  32. PLoS Genet. 2008 Sep 05;4(9):e1000174 [PMID: 18773071]
  33. Genes Dev. 2021 Apr 1;35(7-8):427-432 [PMID: 33861718]
  34. Nucleic Acids Res. 2021 Jan 8;49(D1):D924-D931 [PMID: 33104772]
  35. Nat Rev Genet. 2013 Apr;14(4):288-95 [PMID: 23503198]
  36. Nat Rev Genet. 2005 Feb;6(2):151-7 [PMID: 15716910]
  37. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):775-80 [PMID: 20080751]
  38. Development. 2012 Jan;139(1):203-14 [PMID: 22115758]
  39. Birth Defects Res C Embryo Today. 2004 Jun;72(2):190-9 [PMID: 15269892]
  40. Nature. 2005 Dec 8;438(7069):803-19 [PMID: 16341006]
  41. Helv Paediatr Acta. 1973 Jul;28(3):249-59 [PMID: 4723882]
  42. BMC Med Genet. 2017 May 3;18(1):50 [PMID: 28468609]
  43. Dev Dyn. 2009 Oct;238(10):2575-87 [PMID: 19777590]
  44. EMBO J. 1999 Jun 1;18(11):3090-100 [PMID: 10357820]
  45. Dev Growth Differ. 2015 Oct;57(8):570-80 [PMID: 26464005]
  46. Mol Cell Biol. 2002 Dec;22(24):8592-600 [PMID: 12446778]
  47. Nat Genet. 2008 Nov;40(11):1348-53 [PMID: 18836447]
  48. Cell Rep. 2018 Oct 30;25(5):1255-1267.e5 [PMID: 30380416]
  49. Cancer Sci. 2020 Mar;111(3):783-794 [PMID: 31912579]
  50. Cells. 2013 Jun 27;2(3):496-505 [PMID: 24709795]
  51. PLoS Genet. 2016 Nov 30;12(11):e1006454 [PMID: 27902701]
  52. Nature. 2009 Sep 10;461(7261):199-205 [PMID: 19741700]
  53. Nature. 1983 Dec 15-21;306(5944):662-6 [PMID: 6318113]
  54. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73 [PMID: 16845028]
  55. Nucleic Acids Res. 2005 Sep 22;33(17):5437-45 [PMID: 16179648]
  56. Genome Biol. 2018 Oct 4;19(1):151 [PMID: 30286773]
  57. Sci Signal. 2008 Sep 02;1(35):re9 [PMID: 18765832]
  58. Development. 2006 Mar;133(6):1069-77 [PMID: 16481351]
  59. Hum Mol Genet. 2003 Jul 15;12(14):1725-35 [PMID: 12837695]
  60. Cell. 1997 Dec 12;91(6):845-54 [PMID: 9413993]
  61. J Am Soc Nephrol. 2009 Nov;20(11):2403-11 [PMID: 19820125]
  62. Nucleic Acids Res. 2007 Jan;35(Database issue):D88-92 [PMID: 17130149]
  63. Nucleic Acids Res. 2003 Jan 1;31(1):374-8 [PMID: 12520026]
  64. Genes Dev. 2008 Oct 1;22(19):2651-63 [PMID: 18832070]
  65. Science. 2018 Sep 28;361(6409):1341-1345 [PMID: 30262496]
  66. Nat Protoc. 2008;3(1):59-69 [PMID: 18193022]
  67. Immunity. 1996 Dec;5(6):537-49 [PMID: 8986714]
  68. Nat Protoc. 2006;1(3):1297-305 [PMID: 17406414]
  69. Cell Tissue Res. 2012 Apr;348(1):131-40 [PMID: 22427063]
  70. J Biol Chem. 2000 Dec 15;275(50):38949-52 [PMID: 11042222]
  71. Bone. 2019 Jun;123:153-158 [PMID: 30914275]
  72. Bioessays. 2001 Jan;23(1):54-61 [PMID: 11135309]
  73. Annu Rev Genomics Hum Genet. 2017 Aug 31;18:45-63 [PMID: 28399667]
  74. Cell. 2016 Nov 17;167(5):1170-1187 [PMID: 27863239]
  75. Cell. 2023 Jan 5;186(1):209-229.e26 [PMID: 36608654]
  76. J Biol Chem. 2000 Jun 30;275(26):19594-602 [PMID: 10766745]
  77. Mol Cell. 2009 Dec 11;36(5):872-84 [PMID: 20005849]
  78. PLoS Genet. 2012;8(11):e1003002 [PMID: 23133399]
  79. Nucleic Acids Res. 2023 Jan 6;51(D1):D933-D941 [PMID: 36318249]
  80. Hum Mol Genet. 2008 Jul 15;17(14):2244-54 [PMID: 18424451]
  81. Nucleic Acids Res. 2022 Jan 7;50(D1):D988-D995 [PMID: 34791404]
  82. Nat Genet. 2000 Jan;24(1):71-4 [PMID: 10615131]
  83. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]
  84. Nature. 2013 Apr 18;496(7445):311-6 [PMID: 23598338]
  85. BMC Dev Biol. 2010 Apr 28;10:44 [PMID: 20426846]
  86. BMC Genomics. 2013 Feb 23;14:122 [PMID: 23432897]
  87. J Natl Cancer Inst. 2000 Sep 6;92(17):1414-21 [PMID: 10974077]
  88. Genomics. 2016 Oct;108(3-4):143-150 [PMID: 27580967]
  89. Nature. 2002 Dec 5;420(6915):520-62 [PMID: 12466850]
  90. J Biol Chem. 2002 Aug 23;277(34):30870-8 [PMID: 12077113]

Grants

  1. R01 AR064195/NIAMS NIH HHS

MeSH Term

Animals
Mice
Humans
Zebrafish
Regulatory Sequences, Nucleic Acid
Genome
Base Sequence
Gene Expression
Mammals
Repressor Proteins
Fingers
Hair Diseases
Nose
Langer-Giedion Syndrome

Chemicals

TRPS1 protein, human
Repressor Proteins
Trps1 protein, mouse

Word Cloud

Created with Highcharts 10.0.0Trps1geneCNEsexpressionzebrafishidentificationconservednoncodingrevealedsetenhancerscraniofacialWntsignalingregulatoryunderstandingelementseightpotentialreporterpatternidentifiedvivoassaysTRPS1servescausativetricho-rhinophalangealsyndromeknownskeletalabnormalitiesencodesproteinrepressesstronginteractionsinhibitorsgenomiccis-actingsequencesgoverningcrucialroleembryogenesisNeverthelessdateinvestigationsconductedconcerningaspects ToidentifydeeplywithinlocusemployedcomparativegenomicsapproachutilizingslowlyevolvingfishcoelacanthspottedgaranalysesresultedintronicregionFunctionalcharacterizationvarioustissuesincludingpectoralfinsheartpharyngealarchesRNAin-situhybridizationexperimentsconcordanceinducedspatialtrps1ComparativedatamiceCNE7/hs919functionsinvestigatedcellline-basedrevealingrepressiveTakentogethervitrosuggestcontext-dependentdualfunctionalityTrps1-associatedCNE ThisfunctionallycharacterizedCNE-enhancerswillcontributecomprehensivedevelopmentalrolescanaidDNAvariantsassociatedhumandiseasesCis-regulatorycontrolmammalianGATAtranscriptionfactorsdevelopmenttransgenesis

Similar Articles

Cited By (1)