Relationship between serum β-hydroxybutyrate and hepatic fatty acid oxidation in individuals with obesity and NAFLD.

Mary P Moore, Grace Shryack, Isabella Alessi, Nicole Wieschhaus, Grace M Meers, Sarah A Johnson, Andrew A Wheeler, Jamal A Ibdah, Elizabeth J Parks, R Scott Rector
Author Information
  1. Mary P Moore: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States.
  2. Grace Shryack: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States.
  3. Isabella Alessi: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States.
  4. Nicole Wieschhaus: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States.
  5. Grace M Meers: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States.
  6. Sarah A Johnson: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States.
  7. Andrew A Wheeler: Department of Surgery, University of Missouri, Columbia, Missouri, United States. ORCID
  8. Jamal A Ibdah: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States.
  9. Elizabeth J Parks: Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States. ORCID
  10. R Scott Rector: Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, United States. ORCID

Abstract

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum β-hydroxybutyrate (β-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum β-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity ( = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum β-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower MGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver mRNA and serum β-HB correlated with liver mitochondrial β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity and mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum β-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD. Serum β-hydroxybutyrate (β-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating β-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver mRNA and serum β-HB. Our work supports serum β-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.

Keywords

References

  1. Front Mol Neurosci. 2021 Aug 27;14:732120 [PMID: 34512261]
  2. Biochem J. 1982 May 15;204(2):399-403 [PMID: 7115336]
  3. Am J Physiol Gastrointest Liver Physiol. 2012 Oct 15;303(8):G979-92 [PMID: 22899824]
  4. JAMA. 1999 Nov 3;282(17):1659-64 [PMID: 10553793]
  5. Intern Med. 1992 Aug;31(8):978-83 [PMID: 1477471]
  6. Trends Endocrinol Metab. 2014 Jan;25(1):42-52 [PMID: 24140022]
  7. J Clin Invest. 2023 May 1;133(9): [PMID: 36928190]
  8. Diabetologia. 2005 Apr;48(4):634-42 [PMID: 15747110]
  9. J Biol Chem. 1994 Jul 22;269(29):18767-72 [PMID: 7913466]
  10. Liver Int. 2015 Jul;35(7):1853-61 [PMID: 25533197]
  11. Sci Rep. 2021 Aug 11;11(1):16359 [PMID: 34381166]
  12. Am J Physiol Endocrinol Metab. 2019 Oct 1;317(4):E605-E616 [PMID: 31361543]
  13. JCI Insight. 2019 Apr 23;5: [PMID: 31012869]
  14. Cell Metab. 2015 May 5;21(5):739-46 [PMID: 25955209]
  15. J Lipid Res. 2012 Jun;53(6):1080-92 [PMID: 22493093]
  16. Annu Rev Nutr. 2006;26:1-22 [PMID: 16848698]
  17. Med Sci Sports Exerc. 2014 Jun;46(6):1089-97 [PMID: 24263979]
  18. Am J Physiol Gastrointest Liver Physiol. 2009 Sep;297(3):G567-75 [PMID: 19571235]
  19. Gastroenterology. 2001 Apr;120(5):1183-92 [PMID: 11266382]
  20. Nutrients. 2021 Sep 27;13(10): [PMID: 34684404]
  21. Diabetes Metab Res Rev. 1999 Nov-Dec;15(6):412-26 [PMID: 10634967]
  22. J Clin Endocrinol Metab. 2019 Dec 1;104(12):6171-6181 [PMID: 31408176]
  23. Annu Rev Biochem. 1980;49:395-420 [PMID: 6157353]
  24. Mol Cell. 2016 Apr 21;62(2):194-206 [PMID: 27105115]
  25. Eur J Clin Invest. 2021 Dec;51(12):e13627 [PMID: 34120339]
  26. Liver Int. 2009 Oct;29(9):1439-46 [PMID: 19602132]
  27. J Biol Chem. 2023 Mar;299(3):103005 [PMID: 36775129]
  28. Hepatology. 2011 Mar;53(3):810-20 [PMID: 21319198]
  29. Nat Metab. 2021 Feb;3(2):196-210 [PMID: 33619377]
  30. Gut. 2013 Nov;62(11):1625-33 [PMID: 23077135]
  31. J Biol Chem. 2011 Jun 10;286(23):20423-30 [PMID: 21502324]
  32. Physiol Rev. 1980 Jan;60(1):143-87 [PMID: 6986618]
  33. Cell Metab. 2016 Jul 12;24(1):167-71 [PMID: 27411016]
  34. Eur J Gastroenterol Hepatol. 2011 May;23(5):382-8 [PMID: 21448070]
  35. JCI Insight. 2018 Jun 21;3(12): [PMID: 29925686]
  36. Gastroenterology. 2010 Sep;139(3):846-56, 856.e1-6 [PMID: 20685204]
  37. Gastroenterology. 2018 Aug;155(2):443-457.e17 [PMID: 29733831]
  38. J Physiol. 2016 Aug 1;594(15):4351-8 [PMID: 27060482]
  39. JCI Insight. 2021 Oct 22;6(20): [PMID: 34499623]
  40. Hepatology. 2003 Mar;37(3):544-50 [PMID: 12601351]
  41. Biol Chem. 2012 Jul;393(7):547-64 [PMID: 22944659]
  42. Hepatology. 2022 Nov;76(5):1452-1465 [PMID: 35000203]
  43. Cancer Sci. 2009 Apr;100(4):782-5 [PMID: 19469021]
  44. Cell Metab. 2017 Feb 7;25(2):262-284 [PMID: 28178565]
  45. J Mol Biol. 2005 Dec 9;354(4):751-9 [PMID: 16271724]
  46. J Hepatol. 2010 May;52(5):727-36 [PMID: 20347174]
  47. Metabolism. 2011 Jul;60(7):1001-11 [PMID: 21075404]
  48. Am J Physiol Endocrinol Metab. 2020 Jul 1;319(1):E187-E195 [PMID: 32396388]
  49. Cell Mol Gastroenterol Hepatol. 2017 May 31;4(2):303-323.e1 [PMID: 28840186]
  50. Protein Cell. 2022 Dec;13(12):877-919 [PMID: 34050894]
  51. J Clin Invest. 2014 Dec;124(12):5175-90 [PMID: 25347470]
  52. Sci Rep. 2020 Apr 16;10(1):6489 [PMID: 32300166]
  53. Cell Metab. 2011 Dec 7;14(6):804-10 [PMID: 22152305]

Grants

  1. R01 DK113701-01/HHS | National Institutes of Health (NIH)
  2. I01BX003271/U.S. Department of Veterans Affairs (VA)
  3. I01 BX004710/BLRD VA
  4. R01 DK113701/NIDDK NIH HHS
  5. I01BX004710/U.S. Department of Veterans Affairs (VA)
  6. I01 BX003271/BLRD VA

MeSH Term

Humans
Non-alcoholic Fatty Liver Disease
3-Hydroxybutyric Acid
Liver
Obesity
Ketone Bodies
Biomarkers
RNA, Messenger
Palmitates

Chemicals

3-Hydroxybutyric Acid
Ketone Bodies
Biomarkers
RNA, Messenger
Palmitates

Word Cloud

Created with Highcharts 10.0.0liverNAFLDβ-HBoxidationfattyserumhepaticdiseaseacidmitochondrialNASmRNAmarker=β-hydroxybutyrateFAOpalmitate3-hydroxy-3-methylglutaryl-CoAHMGCS2lowercorrelatednonalcoholicSerumsurrogaterelationshipcontexthumansstratifiedbasedactivityadvancedassociatedreductionssynthase2completefoundratesindividualsinjuryNonalcoholiccharacterizedexcesslipidaccumulationcanprogressinflammationsteatohepatitisNASHfibrosisproductketogenicpathwaycommonlyusedHoweverremainsuncertainwhetherholdstruecomparedfastinglevelsdirectmeasurementseverity142Patientsscore:01-2mild3-4moderate5ModeratelyaserelativeWorseningcorrespondedMGCS2total+incompleteInterestinglyβ-hydroxyacyl-CoAdehydrogenaseβ-HADAlsomassmarkersturnoverpositivelydatasuggestketogenesisoccurcomparablefindingssupportutilityservefrequentlyutilizedhoweverstudiesinvestigatedstatesprogressioncirculatingwelldecreasedworksupportspotentialRelationshipobesityMASLDketonesmitochondria

Similar Articles

Cited By