Engineering models of head and neck and oral cancers on-a-chip.

Mauricio Goncalves da Costa Sousa, Sofia M Vignolo, Cristiane Miranda Franca, Jared Mereness, May Anny Alves Fraga, Alice Corrêa Silva-Sousa, Danielle S W Benoit, Luiz Eduardo Bertassoni
Author Information
  1. Jared Mereness: Departments of Biomedical Engineering and Dermatology and Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Ave, Rochester, New York 14642, USA. ORCID
  2. Alice Corrêa Silva-Sousa: Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo. Av. do Café - Subsetor Oeste-11 (N-11), Ribeirão Preto, SP, 14040-904, Brazil. ORCID

Abstract

Head and neck cancers (HNCs) rank as the sixth most common cancer globally and result in over 450 000 deaths annually. Despite considerable advancements in diagnostics and treatment, the 5-year survival rate for most types of HNCs remains below 50%. Poor prognoses are often attributed to tumor heterogeneity, drug resistance, and immunosuppression. These characteristics are difficult to replicate using or models, culminating in few effective approaches for early detection and therapeutic drug development. Organs-on-a-chip offer a promising avenue for studying HNCs, serving as microphysiological models that closely recapitulate the complexities of biological tissues within highly controllable microfluidic platforms. Such systems have gained interest as advanced experimental tools to investigate human pathophysiology and assess therapeutic efficacy, providing a deeper understanding of cancer pathophysiology. This review outlines current challenges and opportunities in replicating HNCs within microphysiological systems, focusing on mimicking the soft, glandular, and hard tissues of the head and neck. We further delve into the major applications of organ-on-a-chip models for HNCs, including fundamental research, drug discovery, translational approaches, and personalized medicine. This review emphasizes the integration of organs-on-a-chip into the repertoire of biological model systems available to researchers. This integration enables the exploration of unique aspects of HNCs, thereby accelerating discoveries with the potential to improve outcomes for HNC patients.

References

  1. Cancers (Basel). 2020 Aug 18;12(8): [PMID: 32824777]
  2. Br Dent J. 2022 Nov;233(9):780-786 [PMID: 36369568]
  3. Adv Cancer Res. 2021;152:67-102 [PMID: 34353444]
  4. Cancers (Basel). 2022 Jul 28;14(15): [PMID: 35954355]
  5. Adv Sci (Weinh). 2020 Oct 12;7(22):2002030 [PMID: 33240763]
  6. Arch Med Sci. 2018 Jun;14(4):910-919 [PMID: 30002710]
  7. Lab Chip. 2010 Jul 7;10(13):1671-7 [PMID: 20414488]
  8. Sci Rep. 2021 Nov 17;11(1):22419 [PMID: 34789830]
  9. Biomater Sci. 2020 Jun 7;8(11):3078-3094 [PMID: 32347842]
  10. Integr Biol (Camb). 2014 May;6(5):555-63 [PMID: 24676392]
  11. Nat Rev Cancer. 2019 Feb;19(2):65-81 [PMID: 30647431]
  12. Small. 2018 Mar;14(12):e1702787 [PMID: 29399951]
  13. Cell Death Discov. 2023 Apr 13;9(1):124 [PMID: 37055382]
  14. Prog Mol Biol Transl Sci. 2022;187(1):163-204 [PMID: 35094774]
  15. Nat Biomed Eng. 2017;1: [PMID: 29038743]
  16. Mater Today Bio. 2022 Feb 14;13:100219 [PMID: 35243294]
  17. Cancers (Basel). 2019 Dec 30;12(1): [PMID: 31905951]
  18. Exp Mol Med. 2020 Apr;52(4):569-581 [PMID: 32300189]
  19. Commun Biol. 2021 Mar 19;4(1):361 [PMID: 33742114]
  20. J Bone Miner Res. 2018 Dec;33(12):2099-2113 [PMID: 30476357]
  21. Lab Chip. 2020 Jan 21;20(2):405-413 [PMID: 31854401]
  22. Curr Protoc Stem Cell Biol. 2020 Jun;53(1):e109 [PMID: 32294323]
  23. NPJ Precis Oncol. 2020 May 19;4:12 [PMID: 32435696]
  24. Oral Oncol. 2018 Dec;87:49-57 [PMID: 30527243]
  25. Front Cell Dev Biol. 2023 Jun 12;11:1183163 [PMID: 37377731]
  26. Mol Cancer. 2019 Mar 30;18(1):63 [PMID: 30927923]
  27. Lab Chip. 2020 May 19;20(10):1713-1719 [PMID: 32363355]
  28. Nat Rev Clin Oncol. 2019 Nov;16(11):669-683 [PMID: 31189965]
  29. Magn Reson Imaging Clin N Am. 2012 Aug;20(3):435-46 [PMID: 22877950]
  30. J Maxillofac Oral Surg. 2018 Mar;17(1):38-43 [PMID: 29382992]
  31. Surg Oncol Clin N Am. 2015 Jul;24(3):379-96 [PMID: 25979389]
  32. Exp Cell Res. 2019 Oct 15;383(2):111508 [PMID: 31356815]
  33. Connect Tissue Res. 2022 Sep;63(5):514-529 [PMID: 35132918]
  34. Adv Funct Mater. 2021 Feb 3;31(6): [PMID: 35422682]
  35. ACS Biomater Sci Eng. 2021 Mar 8;7(3):1263-1277 [PMID: 33555875]
  36. Cell Stem Cell. 2020 Jan 2;26(1):17-26.e6 [PMID: 31761724]
  37. Niger J Clin Pract. 2022 Mar;25(3):368-372 [PMID: 35295062]
  38. Biomed Res Int. 2020 Jul 16;2020:2098325 [PMID: 32724795]
  39. J Clin Invest. 2017 Apr 3;127(4):1225-1240 [PMID: 28263185]
  40. Nat Biotechnol. 2020 Jul;38(7):824-844 [PMID: 32572269]
  41. Nat Rev Dis Primers. 2020 Nov 26;6(1):92 [PMID: 33243986]
  42. Nat Commun. 2021 Jul 27;12(1):4558 [PMID: 34315904]
  43. NPJ Regen Med. 2023 Mar 25;8(1):17 [PMID: 36966175]
  44. Cancer Lett. 2021 Jun 1;507:55-69 [PMID: 33741424]
  45. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):214-9 [PMID: 25524628]
  46. Int J Oral Maxillofac Surg. 2021 Aug;50(8):994-998 [PMID: 33358588]
  47. J Musculoskelet Neuronal Interact. 2004 Sep;4(3):308-18 [PMID: 15615499]
  48. Int J Mol Sci. 2021 Feb 18;22(4): [PMID: 33670545]
  49. Drug Resist Updat. 2022 Jan;60:100806 [PMID: 35121337]
  50. Cancers (Basel). 2019 Mar 19;11(3): [PMID: 30893927]
  51. Clin Pharmacol Ther. 2018 Dec;104(6):1240-1248 [PMID: 29484632]
  52. Micromachines (Basel). 2021 Mar 18;12(3): [PMID: 33803689]
  53. Cancers (Basel). 2011;3(1):478-93 [PMID: 21603150]
  54. Colloids Surf B Biointerfaces. 2023 Sep;229:113431 [PMID: 37473652]
  55. Int J Oral Sci. 2010 Sep;2(3):117-26 [PMID: 21125789]
  56. Cell Syst. 2016 Nov 23;3(5):456-466.e4 [PMID: 27894999]
  57. Research (Wash D C). 2022 Jan 19;2022:9869518 [PMID: 35136860]
  58. Lancet. 2008 May 17;371(9625):1695-709 [PMID: 18486742]
  59. Br J Cancer. 2021 Jun;124(12):1912-1920 [PMID: 33758331]
  60. Adv Sci (Weinh). 2019 Oct 04;6(22):1901462 [PMID: 31763147]
  61. iScience. 2020 Oct 31;23(11):101751 [PMID: 33241198]
  62. Tissue Cell. 2018 Jun;52:71-77 [PMID: 29857831]
  63. Nat Rev Genet. 2022 Aug;23(8):467-491 [PMID: 35338360]
  64. Front Pharmacol. 2020 Nov 09;11:588480 [PMID: 33343358]
  65. Br J Cancer. 2011 Nov 8;105(10):1582-92 [PMID: 21989184]
  66. Nat Biotechnol. 2014 Aug;32(8):760-72 [PMID: 25093883]
  67. Diagnostics (Basel). 2016 Oct 21;6(4): [PMID: 27775638]
  68. Nat Clin Pract Oncol. 2006 Feb;3(2):104-7 [PMID: 16462851]
  69. Int J Oral Sci. 2010 Mar;2(1):5-14 [PMID: 20690413]
  70. Adv Mater. 2022 Jan;34(3):e2101321 [PMID: 35060652]
  71. Biofabrication. 2022 Oct 27;15(1): [PMID: 36126642]
  72. Dent Clin North Am. 2020 Jan;64(1):121-138 [PMID: 31735223]
  73. Front Immunol. 2023 Apr 04;14:1162905 [PMID: 37081897]
  74. Head Neck. 2001 May;23(5):389-98 [PMID: 11295813]
  75. Cancer Res. 2020 Jan 15;80(2):263-275 [PMID: 31744818]
  76. Nat Commun. 2019 Aug 6;10(1):3520 [PMID: 31388010]
  77. Eur Arch Otorhinolaryngol. 2023 Mar;280(3):1467-1478 [PMID: 36316576]
  78. Trends Cancer. 2018 Apr;4(4):268-271 [PMID: 29606309]
  79. Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1256-1261 [PMID: 29363599]
  80. Alcohol Health Res World. 1998;22(3):153-64 [PMID: 15706790]
  81. Cancer Cell Int. 2020 Dec 22;20(1):599 [PMID: 33353547]
  82. Oral Dis. 2018 Apr;24(3):307-316 [PMID: 28142213]
  83. Lab Chip. 2020 Mar 3;20(5):873-888 [PMID: 32025687]
  84. Am Fam Physician. 2018 Aug 15;98(4):205-213 [PMID: 30215968]
  85. Nature. 2013 Jun 13;498(7453):255-60 [PMID: 23765498]
  86. Nat Rev Cancer. 2023 Sep;23(9):581-599 [PMID: 37353679]
  87. Sci Rep. 2019 Apr 19;9(1):6327 [PMID: 31004114]
  88. iScience. 2023 Apr 26;26(5):106773 [PMID: 37216094]
  89. Oral Dis. 2022 Jan;28(1):23-32 [PMID: 32790941]
  90. EBioMedicine. 2021 Nov;73:103634 [PMID: 34673450]
  91. Front Pharmacol. 2021 Aug 16;12:711307 [PMID: 34483920]
  92. Front Oncol. 2023 Apr 28;13:1164535 [PMID: 37188201]
  93. Nat Protoc. 2013 Nov;8(11):2135-57 [PMID: 24113786]
  94. Acta Biomater. 2023 Aug;166:187-200 [PMID: 37150277]
  95. Lab Chip. 2020 Nov 24;20(23):4486-4501 [PMID: 33112317]
  96. Dig Dis. 2005;23(3-4):195-203 [PMID: 16508283]
  97. Nat Commun. 2022 Jun 7;13(1):3291 [PMID: 35672412]
  98. Nat Methods. 2016 Feb;13(2):151-7 [PMID: 26689262]
  99. Sci Transl Med. 2022 Sep 7;14(661):eabo5987 [PMID: 36070368]
  100. Cells. 2020 Apr 15;9(4): [PMID: 32326444]
  101. J Transl Med. 2023 Jun 10;21(1):376 [PMID: 37296466]
  102. Nat Rev Clin Oncol. 2021 Aug;18(8):488-505 [PMID: 33875860]
  103. Cell Rep. 2018 Jun 19;23(12):3698 [PMID: 29925009]
  104. Int J Oral Sci. 2021 Aug 2;13(1):24 [PMID: 34341329]
  105. Sci Transl Med. 2019 Jun 19;11(497): [PMID: 31217335]
  106. Biomed Microdevices. 2021 Jan 11;23(1):7 [PMID: 33426594]
  107. Biomaterials. 2018 May;164:54-69 [PMID: 29490260]
  108. Nat Rev Cancer. 2023 Jun;23(6):391-407 [PMID: 37138029]
  109. Int J Oral Sci. 2023 Jun 29;15(1):27 [PMID: 37386003]
  110. Cell Rep. 2019 Nov 5;29(6):1660-1674.e7 [PMID: 31693903]

Word Cloud

Created with Highcharts 10.0.0HNCsmodelsneckdrugsystemscancerscancerapproachestherapeuticmicrophysiologicalbiologicaltissueswithinpathophysiologyreviewheadintegrationHeadranksixthcommongloballyresult450 000deathsannuallyDespiteconsiderableadvancementsdiagnosticstreatment5-yearsurvivalratetypesremains50%PoorprognosesoftenattributedtumorheterogeneityresistanceimmunosuppressioncharacteristicsdifficultreplicateusingculminatingeffectiveearlydetectiondevelopmentOrgans-on-a-chipofferpromisingavenuestudyingservingcloselyrecapitulatecomplexitieshighlycontrollablemicrofluidicplatformsgainedinterestadvancedexperimentaltoolsinvestigatehumanassessefficacyprovidingdeeperunderstandingoutlinescurrentchallengesopportunitiesreplicatingfocusingmimickingsoftglandularharddelvemajorapplicationsorgan-on-a-chipincludingfundamentalresearchdiscoverytranslationalpersonalizedmedicineemphasizesorgans-on-a-chiprepertoiremodelavailableresearchersenablesexplorationuniqueaspectstherebyacceleratingdiscoveriespotentialimproveoutcomesHNCpatientsEngineeringoralon-a-chip

Similar Articles

Cited By