Imaging plant cell walls using fluorescent stains: The beauty is in the details.

Luca Piccinini, Fabien Nirina Ramamonjy, Robertas Ursache
Author Information
  1. Luca Piccinini: Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain. ORCID
  2. Fabien Nirina Ramamonjy: Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain. ORCID
  3. Robertas Ursache: Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain. ORCID

Abstract

Plants continuously face various environmental stressors throughout their lifetime. To be able to grow and adapt in different environments, they developed specialized tissues that allowed them to maintain a protected yet interconnected body. These tissues undergo specific primary and secondary cell wall modifications that are essential to ensure normal plant growth, adaptation and successful land colonization. The composition of cell walls can vary among different plant species, organs and tissues. The ability to remodel their cell walls is fundamental for plants to be able to cope with multiple biotic and abiotic stressors. A better understanding of the changes taking place in plant cell walls may help identify and develop new strategies as well as tools to enhance plants' survival under environmental stresses or prevent pathogen attack. Since the invention of microscopy, numerous imaging techniques have been developed to determine the composition and dynamics of plant cell walls during normal growth and in response to environmental stimuli. In this review, we discuss the main advances in imaging plant cell walls, with a particular focus on fluorescent stains for different cell wall components and their compatibility with tissue clearing techniques. Lay Description: Plants are continuously subjected to various environmental stresses during their lifespan. They evolved specialized tissues that thrive in different environments, enabling them to maintain a protected yet interconnected body. Such tissues undergo distinct primary and secondary cell wall alterations essential to normal plant growth, their adaptability and successful land colonization. Cell wall composition may differ among various plant species, organs and even tissues. To deal with various biotic and abiotic stresses, plants must have the capacity to remodel their cell walls. Gaining insight into changes that take place in plant cell walls will help identify and create novel tools and strategies to improve plants' ability to withstand environmental challenges. Multiple imaging techniques have been developed since the introduction of microscopy to analyse the composition and dynamics of plant cell walls during growth and in response to environmental changes. Advancements in plant tissue cleaning procedures and their compatibility with cell wall stains have significantly enhanced our ability to perform high-resolution cell wall imaging. At the same time, several factors influence the effectiveness of cleaning and staining plant specimens, as well as the time necessary for the process, including the specimen's size, thickness, tissue complexity and the presence of autofluorescence. In this review, we will discuss the major advances in imaging plant cell walls, with a particular emphasis on fluorescent stains for diverse cell wall components and their compatibility with tissue clearing techniques. We hope that this review will assist readers in selecting the most appropriate stain or combination of stains to highlight specific cell wall components of interest.

Keywords

References

  1. Xin, A., & Herburger, K. (2021). Precursor biosynthesis regulation of lignin, suberin and cutin. Protoplasma, 258(6), 1171���1178. https://doi.org/10.1007/s00709���021���01676���4
  2. Calvo���Polanco, M., Ribeyre, Z., Dauzat, M., Reyt, G., Hidalgo���Shrestha, C., Diehl, P., Frenger, M., Simonneau, T., Muller, B., Salt, D. E., Franke, R. B., Maurel, C., & Boursiac, Y. (2021). Physiological roles of Casparian strips and suberin in the transport of water and solutes. New Phytologist, 232(6), 2295���2307. https://doi.org/10.1111/nph.17765
  3. Hooke, R., Martyn, J., & Allestry, J. (1665). Micrographia, or, some physiological descriptions of minute bodies made by magnifying glasses���: With observations and inquiries thereupon. Royal Society. https://doi.org/10.5962/bhl.title.904
  4. Ellinger, I., & Ellinger, A. (2014). Smallest unit of life: Cell biology. In E. Jensen���Jarolim (Ed.), Comparative medicine (pp. 19���33). Springer. https://doi.org/10.1007/978���3���7091���1559���6_2
  5. Hagmann, J.���G. (2023). Unimaginable. How Van Leeuwenhoek's microscope changed the world. Nuncius, 38(3), 715���717. https://doi.org/10.1163/18253911���bja10075
  6. Minsky, M. (1988). Memoir on inventing the confocal scanning microscope. Scanning, 10(4), 128���138. https://doi.org/10.1002/sca.4950100403
  7. Somssich, M. (2022). A short history of plant light microscopy. Current Protocols, 2(10), e577. https://doi.org/10.1002/cpz1.577
  8. Acu��a, A. U., & Amat���Guerri, F. (2007). Early history of solution fluorescence: The Lignum nephriticum of Nicol��s Monardes. In M. N. Berberan���Santos (Ed.), Fluorescence of supermolecules, polymers, and nanosystems (Vol. 4, pp. 3���20). Springer. https://doi.org/10.1007/4243_2007_006
  9. H��rich��, M., Arnould, C., Wipf, D., & Courty, P.���E. (2022). Imaging plant tissues: Advances and promising clearing practices. Trends in Plant Science, 27(6), 601���615. https://doi.org/10.1016/j.tplants.2021.12.006
  10. Warner, C. A., Biedrzycki, M. L., Jacobs, S. S., Wisser, R. J., Caplan, J. L., & Sherrier, D. J. (2014). An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiology, 166(4), 1684���1687. https://doi.org/10.1104/pp.114.244673
  11. Kurihara, D., Mizuta, Y., Nagahara, S., & Higashiyama, T. (2021). ClearSeeAlpha: Advanced optical clearing for whole���plant imaging. Plant and Cell Physiology, 62(8), 1302���1310. https://doi.org/10.1093/pcp/pcab033
  12. Kurihara, D., Mizuta, Y., Sato, Y., & Higashiyama, T. (2015). ClearSee: A rapid optical clearing reagent for whole���plant fluorescence imaging. Development, 142, 4168���4179. https://doi.org/10.1242/dev.127613
  13. Musielak, T. J., Slane, D., Liebig, C., & Bayer, M. (2016). A versatile optical clearing protocol for deep tissue imaging of fluorescent proteins in Arabidopsis thaliana. PLoS ONE, 11(8), e0161107. https://doi.org/10.1371/journal.pone.0161107
  14. Ursache, R., Andersen, T. G., Marhav��, P., & Geldner, N. (2018). A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. The Plant Journal, 93(2), 399���412. https://doi.org/10.1111/tpj.13784
  15. Attuluri, V. P. S., S��nchez L��pez, J. F., Maier, L., Paruch, K., & Robert, H. S. (2022). Comparing the efficiency of six clearing methods in developing seeds of Arabidopsis thaliana. Plant Reproduction, 35(4), 279���293. https://doi.org/10.1007/s00497���022���00453���4
  16. Hughes, J., & McCully, M. E. (1975). The use of an optical brightener in the study of plant structure. Stain Technology, 50(5), 319���329. https://doi.org/10.3109/10520297509117082
  17. Hoch, H. C., Galvani, C. D., Szarowski, D. H., & Turner, J. N. (2005). Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia, 97(3), 580���588. https://doi.org/10.1080/15572536.2006.11832788
  18. Darken, M. A. (1961). Applications of fluorescent brighteners in biological techniques. Science, 133(3465), 1704���1705. https://doi.org/10.1126/science.133.3465.1704
  19. Yang, X., Xie, H., Weng, Q., Liang, K., Zheng, X., Guo, Y., & Sun, X. (2022). Rice OsCASP1 orchestrates Casparian strip formation and suberin deposition in small lateral roots to maintain nutrient homeostasis. Frontiers in Plant Science, 13, 1007300. https://doi.org/10.3389/fpls.2022.1007300
  20. Tofanelli, R., Vijayan, A., Scholz, S., & Schneitz, K. (2019). Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. Plant Methods, 15(1), 120. https://doi.org/10.1186/s13007���019���0505���x
  21. Herrera���Ubaldo, H., & De Folter, S. (2018). Exploring cell wall composition and modifications during the development of the gynoecium medial domain in Arabidopsis. Frontiers in Plant Science, 9, 454. https://doi.org/10.3389/fpls.2018.00454
  22. Liang, Y., Heyman, J., Xiang, Y., Vandendriessche, W., Canher, B., Goeminne, G., & De Veylder, L. (2022). The wound���activated ERF15 transcription factor drives Marchantia polymorpha regeneration by activating an oxylipin biosynthesis feedback loop. Science Advances, 8(32), eabo7737. https://doi.org/10.1126/sciadv.abo7737
  23. Palmer, W. M., Martin, A. P., Flynn, J. R., Reed, S. L., White, R. G., Furbank, R. T., & Grof, C. P. L. (2015). PEA���CLARITY: 3D molecular imaging of whole plant organs. Scientific Reports, 5(1), 13492. https://doi.org/10.1038/srep13492
  24. Falcioni, R., Moriwaki, T., Furlanetto, R. H., Nanni, M. R., & Antunes, W. C. (2022). Simple, fast and efficient methods for analysing the structural, ultrastructural and cellular components of the cell wall. Plants, 11(7), 995. https://doi.org/10.3390/plants11070995
  25. Ibrahim, L. (2001). An investigation of wound healing in sugar beet roots using light and fluorescence microscopy. Annals of Botany, 88(2), 313���320. https://doi.org/10.1006/anbo.2001.1461
  26. Kitin, P., Nakaba, S., Hunt, C. G., Lim, S., & Funada, R. (2020). Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AoB PLANTS, 12(4), plaa032. https://doi.org/10.1093/aobpla/plaa032
  27. Flores���F��lix, J.���D., Marcos���Garc��a, M., Silva, L. R., Men��ndez, E., Mart��nez���Molina, E., Mateos, P. F., Vel��zquez, E., Garc��a���Fraile, P., Andrade, P., & Rivas, R. (2015). Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis, 67(1���3), 25���32. https://doi.org/10.1007/s13199���015���0373���8
  28. Anderson, C. T., Carroll, A., Akhmetova, L., & Somerville, C. (2010). Real���time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiology, 152(2), 787���796. https://doi.org/10.1104/pp.109.150128
  29. Bidhendi, A. J., Chebli, Y., & Geitmann, A. (2020). Fluorescence visualization of cellulose and pectin in the primary plant cell wall. Journal of Microscopy, 278(3), 164���181. https://doi.org/10.1111/jmi.12895
  30. Liesche, J., Ziomkiewicz, I., & Schulz, A. (2013). Super���resolution imaging with pontamine fast scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant Biology, 13(1), 226. https://doi.org/10.1186/1471���2229���13���226
  31. Thomas, J., & Collings, D. A. (2017). Detection and mapping of resin canals by image analysis in transverse sections of mechanically perturbed, young Pinus radiata trees. IAWA Journal, 38(2), 170���181. https://doi.org/10.1163/22941932���20170166
  32. Wood, P. J. (1980). Specificity in the interaction of direct dyes with polysaccharides. Carbohydrate Research, 85(2), 271���287. https://doi.org/10.1016/S0008���6215(00)84676���5
  33. Verbelen, J. P., & Kerstens, S. (2000). Polarization confocal microscopy and congo red fluorescence: A simple and rapid method to determine the mean cellulose fibril orientation in plants. Journal of Microscopy, 198(2), 101���107. https://doi.org/10.1046/j.1365���2818.2000.00691.x
  34. Ribas���Agust��, A., Van Buggenhout, S., Palmero, P., Hendrickx, M., & Van Loey, A. (2014). Investigating the role of pectin in carrot cell wall changes during thermal processing: A microscopic approach. Innovative Food Science & Emerging Technologies, 24, 113���120. https://doi.org/10.1016/j.ifset.2013.09.005
  35. Harris, K., Crabb, D., Young, I. M., Weaver, H., Gilligan, C. A., Otten, W., & Ritz, K. (2002). In situ visualisation of fungi in soil thin sections: problems with crystallisation of the fluorochrome FB 28 (Calcofluor M2R) and improved staining by SCRI Renaissance 2200. Mycological Research, 106(3), 293���297. https://doi.org/10.1017/s0953756202005749
  36. M��kil��, R., Wybouw, B., Smetana, O., Vainio, L., Sol�����Gil, A., Lyu, M., Ye, L., Wang, X., Siligato, R., Jenness, M. K., Murphy, A. S., & M��h��nen, A. P. (2023). Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Nature Plants, 9(4), 631���644. https://doi.org/10.1038/s41477���023���01360���w
  37. Xiao, T. T., Kirschner, G. K., Kountche, B. A., Jamil, M., Savina, M., Lube, V., Mironova, V., Al Babili, S., & Blilou, I. (2022). A PLETHORA/PIN���FORMED/auxin network mediates prehaustorium formation in the parasitic plant Striga hermonthica. Plant Physiology, 189(4), 2281���2297. https://doi.org/10.1093/plphys/kiac215
  38. Musielak, T. J., Schenkel, L., Kolb, M., Henschen, A., & Bayer, M. (2015). A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reproduction, 28(3���4), 161���169. https://doi.org/10.1007/s00497���015���0267���1
  39. Saffer, A. M. (2018). Expanding roles for pectins in plant development. Journal of Integrative Plant Biology, 60(10), 910���923. https://doi.org/10.1111/jipb.12662
  40. Voragen, A. G. J., Coenen, G.���J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20(2), 263���275. https://doi.org/10.1007/s11224���009���9442���z
  41. Suzuki, T., Fujikura, K., Higashiyama, T., & Takata, K. (1997). DNA staining for fluorescence and laser confocal microscopy. Journal of Histochemistry & Cytochemistry, 45(1), 49���53.
  42. Rounds, C. M., Lubeck, E., Hepler, P. K., & Winship, L. J. (2011). Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiology, 157(1), 175���187. https://doi.org/10.1104/pp.111.182196
  43. Naseer, S., Lee, Y., Lapierre, C., Franke, R., Nawrath, C., & Geldner, N. (2012). Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proceedings of the National Academy of Sciences, 109(25), 10101���10106. https://doi.org/10.1073/pnas.1205726109
  44. Manzano, C., Morimoto, K. W., Shaar���Moshe, L., Mason, G. A., Cant�����Pastor, A., Gouran, M., Bellis, D. D., Ursache, R., Kajala, K., Sinha, N., Bailey���Serres, J., Geldner, N., Pozo, J. C. D., & Brady, S. M. (2022). Regulation and function of a polarly localized lignin barrier in the exodermis. bioRxiv 2022.10.20.513117. https://doi.org/10.1101/2022.10.20.513117
  45. Wunderling, A., Ben Targem, M., Barbier De Reuille, P., & Ragni, L. (2017). Novel tools for quantifying secondary growth. Journal of Experimental Botany, 68(1), 89���95. https://doi.org/10.1093/jxb/erw450
  46. Krasnow, M., Matthews, M., & Shackel, K. (2008). Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Journal of Experimental Botany, 59(4), 849���859. https://doi.org/10.1093/jxb/erm372
  47. Truernit, E., & Haseloff, J. (2008). A simple way to identify non���viable cells within living plant tissue using confocal microscopy. Plant Methods, 4(1), 15. https://doi.org/10.1186/1746���4811���4���15
  48. Jones, K., Kim, D. W., Park, J. S., & Khang, C. H. (2016). Live���cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biology, 16(1), 69. https://doi.org/10.1186/s12870���016���0756���x
  49. Pelletier, S., Van Orden, J., Wolf, S., Vissenberg, K., Delacourt, J., Ndong, Y. A., Pelloux, J., Bischoff, V., Urbain, A., Mouille, G., Lemonnier, G., Renou, J., & H��fte, H. (2010). A role for pectin de���methylesterification in a developmentally regulated growth acceleration in dark���grown Arabidopsis hypocotyls. New Phytologist, 188(3), 726���739. https://doi.org/10.1111/j.1469���8137.2010.03409.x
  50. Matsuo, Y., Arimura, S., & Tsutsumi, N. (2013). Distribution of cellulosic wall in the anthers of Arabidopsis during microsporogenesis. Plant Cell Reports, 32(11), 1743���1750. https://doi.org/10.1007/s00299���013���1487���1
  51. Rui, Y., Chen, Y., Yi, H., Purzycki, T., Puri, V. M., & Anderson, C. T. (2019). Synergistic pectin degradation and guard cell pressurization underlie stomatal pore formation. Plant Physiology, 180(1), 66���77. https://doi.org/10.1104/pp.19.00135
  52. Ben���Tov, D., Idan���Molakandov, A., Hugger, A., Ben���Shlush, I., G��nl, M., Yang, B., Usadel, B., & Harpaz���Saad, S. (2018). The role of COBRA���LIKE 2 function, as part of the complex network of interacting pathways regulating Arabidopsis seed mucilage polysaccharide matrix organization. The Plant Journal, 94(3), 497���512. https://doi.org/10.1111/tpj.13871
  53. Haseloff, J. (2003). Old botanical techniques for new microscopes. BioTechniques, 34(6), 1174���1182. https://doi.org/10.2144/03346bi01
  54. Truernit, E., Siemering, K. R., Hodge, S., Grbic, V., & Haseloff, J. (2006). A map of KNAT gene expression in the Arabidopsis root. Plant Molecular Biology, 60(1), 1���20. https://doi.org/10.1007/s11103���005���1673���9
  55. Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barth��l��my, J., & Palauqui, J.���C. (2008). High���resolution whole���mount imaging of three���dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. The Plant Cell, 20(6), 1494���1503. https://doi.org/10.1105/tpc.107.056069
  56. Coen, O., Lu, J., Xu, W., De Vos, D., P��choux, C., Domergue, F., Grain, D., Lepiniec, L., & Magnani, E. (2019). Deposition of a cutin apoplastic barrier separating seed maternal and zygotic tissues. BMC Plant Biology, 19(1), 304. https://doi.org/10.1186/s12870���019���1877���9
  57. Czyzewicz, N., Wildhagen, M., Cattaneo, P., Stahl, Y., Pinto, K. G., Aalen, R. B., Butenko, M. A., Simon, R., Hardtke, C. S., & De Smet, I. (2015). Antagonistic peptide technology for functional dissection of CLE peptides revisited. Journal of Experimental Botany, 66(17), 5367���5374. https://doi.org/10.1093/jxb/erv284
  58. Burkart, R. C., Strotmann, V. I., Kirschner, G. K., Akinci, A., Czempik, L., Dolata, A., Maizel, A., Weidtkamp���Peters, S., & Stahl, Y. (2022). PLETHORA���WOX5 interaction and subnuclear localization control Arabidopsis root stem cell maintenance. EMBO Reports, 23(6), e54105. https://doi.org/10.15252/embr.202154105
  59. Lionetti, V. (2015). PECTOPLATE: The simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Frontiers in Plant Science, 6, 331. https://doi.org/10.3389/fpls.2015.00331
  60. Western, T. L., Burn, J., Tan, W. L., Skinner, D. J., Martin���McCaffrey, L., Moffatt, B. A., & Haughn, G. W. (2001). Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiology, 127(3), 998���1011. https://doi.org/10.1104/pp.010410
  61. Chudzik, B., Szczuka, E., Leszczuk, A., & Strubi��ska, J. (2018). Modification of pectin distribution in sunflower (Helianthus annuus L.) roots in response to lead exposure. Environmental and Experimental Botany, 155, 251���259. https://doi.org/10.1016/j.envexpbot.2018.07.005
  62. Nagayama, T., Nakamura, A., Yamaji, N., Satoh, S., Furukawa, J., & Iwai, H. (2019). Changes in the distribution of pectin in root border cells under aluminum stress. Frontiers in Plant Science, 10, 1216. https://doi.org/10.3389/fpls.2019.01216
  63. Joca, T. A. C., De Oliveira, D. C., Zotz, G., Cardoso, J. C. F., & Moreira, A. S. F. P. (2020). Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae. Protoplasma, 257(1), 103���118. https://doi.org/10.1007/s00709���019���01421���y
  64. Kohorn, B. D., Zorensky, F. D. H., Dexter���Meldrum, J., Chabout, S., Mouille, G., & Kohorn, S. (2021). Mutation of an Arabidopsis Golgi membrane protein ELMO1 reduces cell adhesion. Development, 148(10), dev199420. https://doi.org/10.1242/dev.199420
  65. Agust��, J., Merelo, P., Cerc��s, M., Tadeo, F. R., & Tal��n, M. (2008). Ethylene���induced differential gene expression during abscission of citrus leaves. Journal of Experimental Botany, 59(10), 2717���2733. https://doi.org/10.1093/jxb/ern138
  66. Ning, T., Chen, C., Yi, G., Chen, H., Liu, Y., Fan, Y., Liu, J., Chen, S., Wei, S., Li, Z., Tan, Y., He, Z., & Xu, C. (2021). Changes in homogalacturonan metabolism in banana peel during fruit development and ripening. International Journal of Molecular Sciences, 23(1), 243. https://doi.org/10.3390/ijms23010243
  67. Lulai, E. (2001). The importance of phellogen cells and their structural characteristics in susceptibility and resistance to excoriation in immature and mature potato tuber (Solanum tuberosum L.) periderm. Annals of Botany, 88(4), 555���561. https://doi.org/10.1006/anbo.2001.1497
  68. Marques, J. P. R., & Nuevo, L. G. (2022). Double���staining method to detect pectin in plant���fungus interaction. Journal of Visualized Experiments, 180, 63432. https://doi.org/10.3791/63432
  69. Ralph, J., Lapierre, C., & Boerjan, W. (2019). Lignin structure and its engineering. Current Opinion in Biotechnology, 56, 240���249. https://doi.org/10.1016/j.copbio.2019.02.019
  70. Donaldson, L. (2020). Autofluorescence in plants. Molecules, 25(10), 2393. https://doi.org/10.3390/molecules25102393
  71. Machado, A. E. D. H., De Paula, R., Ruggiero, R., Gardrat, C., & Castellan, A. (2006). Photophysics of dibenzodioxocins. Journal of Photochemistry and Photobiology A: Chemistry, 180(1���2), 165���174. https://doi.org/10.1016/j.jphotochem.2005.10.011
  72. Shtein, I., Shelef, Y., Marom, Z., Zelinger, E., Schwartz, A., Popper, Z. A., Bar���On, B., & Harpaz���Saad, S. (2017). Stomatal cell wall composition: Distinctive structural patterns associated with different phylogenetic groups. Annals of Botany, 119(6), 1021���1033. https://doi.org/10.1093/aob/mcw275
  73. Lee, Y., Yoon, T. H., Lee, J., Jeon, S. Y., Lee, J. H., Lee, M. K., Chen, H., Yun, J., Oh, S. Y., Wen, X., Cho, H. K., Mang, H., & Kwak, J. M. (2018). A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell, 173(6), 1468���1480.e9. https://doi.org/10.1016/j.cell.2018.03.060
  74. Donaldson, L. (2013). Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA Journal, 34(1), 3���19. https://doi.org/10.1163/22941932���00000002
  75. Blaschek, L., Murozuka, E., Serk, H., M��nard, D., & Pesquet, E. (2023). Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. The Plant Cell, 35(2), 889���909. https://doi.org/10.1093/plcell/koac344
  76. Black, R. A., Rosen, A. A., & Adams, S. L. (1953). The chromatographic separation of hardwood extractive components giving color reactions with phloroglucinol. Journal of the American Chemical Society, 75(21), 5344���5346. https://doi.org/10.1021/ja01117a058
  77. Blaschek, L., Champagne, A., Dimotakis, C., Nuoendagula, Decou, R., Hishiyama, S., Kratzer, S., Kajita, S., & Pesquet, E. (2020). Cellular and genetic regulation of coniferaldehyde incorporation in lignin of herbaceous and woody plants by quantitative wiesner staining. Frontiers in Plant Science, 11, 109. https://doi.org/10.3389/fpls.2020.00109
  78. Oliveira, G. D. L., Abreu, H. D. S., Elias, T. D. F., Silva, B. C. D., Gurgel, M. D. M., Gon��alves, C. H. R., & Soares, G. L. G. (2013). Histochemistry and infrared microspectroscopy of lignified tissue in young stems of Struthanthus vulgaris mart. Floresta e Ambiente, 20(2), 257���263. https://doi.org/10.4322/floram.2013.016
  79. Ferreira, B. G., Falcioni, R., Guedes, L. M., Avritzer, S. C., Antunes, W. C., Souza, L. A., & Isaias, R. M. S. (2017). Preventing false negatives for histochemical detection of phenolics and lignins in PEG���embedded plant tissues. Journal of Histochemistry & Cytochemistry, 65(2), 105���116. https://doi.org/10.1369/0022155416677035
  80. M��ule, C. (1901). Das verhalten verholzter membranen gegen kaliumpermanganat, eine holzreaktion neuer art. In Beitr��ge zur Wissenschaftlichen Botanik (pp. 149���165). Forgotten Books.
  81. Barbosa, I. C. R., Rojas���Murcia, N., & Geldner, N. (2019). The Casparian strip���One ring to bring cell biology to lignification? Current Opinion in Biotechnology, 56, 121���129. https://doi.org/10.1016/j.copbio.2018.10.004
  82. P��rez���Ant��n, M., Schneider, I., Kroll, P., Hofhuis, H., Metzger, S., Pauly, M., & Hay, A. (2022). Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proceedings of the National Academy of Sciences, 119(24), e2202287119. https://doi.org/10.1073/pnas.2202287119
  83. Wagner, A., Donaldson, L., Kim, H., Phillips, L., Flint, H., Steward, D., Torr, K., Koch, G., Schmitt, U., & Ralph, J. (2009). Suppression of 4���coumarate���CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiology, 149(1), 370���383. https://doi.org/10.1104/pp.108.125765
  84. Kapp, N., Barnes, W. J., Richard, T. L., & Anderson, C. T. (2015). Imaging with the fluorogenic dye basic fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon. Journal of Experimental Botany, 66(14), 4295���4304. https://doi.org/10.1093/jxb/erv158
  85. Zhang, Y., Wu, L., Wang, X., Chen, B., Zhao, J., Cui, J., Li, Z., Yang, J., Wu, L., Wu, J., Zhang, G., & Ma, Z. (2019). The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence���induced lignification and lignin components in the cell walls of plants. Molecular Plant Pathology, 20(3), 309���322. https://doi.org/10.1111/mpp.12755
  86. Baldacci���Cresp, F., Spriet, C., Twyffels, L., Blervacq, A., Neutelings, G., Baucher, M., & Hawkins, S. (2020). A rapid and quantitative safranin���based fluorescent microscopy method to evaluate cell wall lignification. The Plant Journal, 102(5), 1074���1089. https://doi.org/10.1111/tpj.14675
  87. Srebotnik, E., & Messner, K. (1994). A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Applied and Environmental Microbiology, 60(4), 1383���1386. https://doi.org/10.1128/aem.60.4.1383���1386.1994
  88. Vazquez���Cooz, I., & Meyer, R. W. (2002). A differential staining method to identify lignified and unlignified tissues. Biotechnic & Histochemistry, 77(5���6), 277���282. https://doi.org/10.1080/bih.77.5���6.277.282
  89. Brundrett, M. C., Enstone, D. E., & Peterson, C. A. (1988). A berberine���aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma, 146(2���3), 133���142. https://doi.org/10.1007/BF01405922
  90. Zhao, Y., Man, Y., Wen, J., Guo, Y., & Lin, J. (2019). Advances in imaging plant cell walls. Trends in Plant Science, 24(9), 867���878. https://doi.org/10.1016/j.tplants.2019.05.009
  91. Meyer, C. J., & Peterson, C. A. (2011). Casparian bands occur in the periderm of Pelargonium hortorum stem and root. Annals of Botany, 107(4), 591���598. https://doi.org/10.1093/aob/mcq267
  92. Donaldson, L., Hague, J., & Snell, R. (2001). Lignin distribution in coppice poplar, linseed and wheat straw. Holzforschung, 55(4), 379���385. https://doi.org/10.1515/HF.2001.063
  93. Kiyoto, S., Yoshinaga, A., Fernandez���Tendero, E., Day, A., Chabbert, B., & Takabe, K. (2018). Distribution of lignin, hemicellulose, and arabinogalactan protein in hemp phloem fibers. Microscopy and Microanalysis, 24(4), 442���452. https://doi.org/10.1017/S1431927618012448
  94. Truskina, J., Br��ck, S., Stintzi, A., Boeuf, S., Doll, N. M., Fujita, S., Geldner, N., Schaller, A., & Ingram, G. C. (2022). A peptide���mediated, multilateral molecular dialogue for the coordination of pollen wall formation. Proceedings of the National Academy of Sciences, 119(22), e2201446119. https://doi.org/10.1073/pnas.2201446119
  95. Hiraide, H., Tobimatsu, Y., Yoshinaga, A., Lam, P. Y., Kobayashi, M., Matsushita, Y., Fukushima, K., & Takabe, K. (2021). Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. New Phytologist, 230(6), 2186���2199. https://doi.org/10.1111/nph.17264
  96. Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Niculaes, C., Dima, O., Kim, J. I., Anderson, N., Loque, D., Boerjan, W., Chapple, C., & Ralph, J. (2013). Visualization of plant cell wall lignification using fluorescence���tagged monolignols. The Plant Journal, 76(3), 357���366. https://doi.org/10.1111/tpj.12299
  97. Pradhan Mitra, P., & Loqu��, D. (2014). Histochemical staining of Arabidopsis thaliana secondary cell wall elements. Journal of Visualized Experiments, 87, 51381. https://doi.org/10.3791/51381
  98. O'Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2), 368���373. https://doi.org/10.1007/BF01248568
  99. Philippe, G., S��rensen, I., Jiao, C., Sun, X., Fei, Z., Domozych, D. S., & Rose, J. K. (2020). Cutin and suberin: Assembly and origins of specialized lipidic cell wall scaffolds. Current Opinion in Plant Biology, 55, 11���20. https://doi.org/10.1016/j.pbi.2020.01.008
  100. Moussu, S., San���Bento, R., Galletti, R., Creff, A., Farcot, E., & Ingram, G. (2013). Embryonic cuticle establishment: The great (apoplastic) divide. Plant Signaling & Behavior, 8(12), e27491. https://doi.org/10.4161/psb.27491
  101. Berhin, A., De Bellis, D., Franke, R. B., Buono, R. A., Nowack, M. K., & Nawrath, C. (2019). The root cap cuticle: A cell wall structure for seedling establishment and lateral root formation. Cell, 176(6), 1367���1378. e8. https://doi.org/10.1016/j.cell.2019.01.005
  102. Dom��nguez, E., Heredia���Guerrero, J. A., & Heredia, A. (2017). The plant cuticle: Old challenges, new perspectives. Journal of Experimental Botany, 68(19), 5251���5255. https://doi.org/10.1093/jxb/erx389
  103. Tanios, S., Thangavel, T., Eyles, A., Tegg, R. S., Nichols, D. S., Corkrey, R., & Wilson, C. R. (2020). Suberin deposition in potato periderm: A novel resistance mechanism against tuber greening. New Phytologist, 225(3), 1273���1284. https://doi.org/10.1111/nph.16334
  104. De Silva, N. D. G., Boutin, C., Lukina, A. O., Western, T. L., Molina, I., & Rowland, O. (2021). Seed coat suberin forms a barrier against chromium (Cr3+) during early seed germination in Arabidopsis thaliana. Environmental and Experimental Botany, 191, 104632. https://doi.org/10.1016/j.envexpbot.2021.104632
  105. Pereira, H. (1988). Chemical composition and variability of cork from Quercus suber L. Wood Science and Technology, 22(3), 211���218. https://doi.org/10.1007/BF00386015
  106. Legay, S., Cocco, E., Andr��, C. M., Guignard, C., Hausman, J.���F., & Guerriero, G. (2017). Differential lipid composition and gene expression in the semi���russeted ���cox orange pippin��� apple variety. Frontiers in Plant Science, 8, 1656. https://doi.org/10.3389/fpls.2017.01656
  107. Brundrett, M. C., Kendrick, B., & Peterson, C. A. (1991). Efficient lipid staining in plant material with Sudan red 7B or fluoral yellow 088 in polyethylene glycol���glycerol. Biotechnic & Histochemistry, 66(3), 111���116. https://doi.org/10.3109/10520299109110562
  108. Onyango, D. A., Entila, F., Egdane, J., Pacleb, M., Katimbang, M. L., Dida, M. M., Ismail, A. M., & Drame, K. N. (2020). Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 2. Root oxidation ability and oxidative stress control. Functional Plant Biology, 47(2), 145. https://doi.org/10.1071/FP19054
  109. Vandeleur, R. K., Mayo, G., Shelden, M. C., Gilliham, M., Kaiser, B. N., & Tyerman, S. D. (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 149(1), 445���460. https://doi.org/10.1104/pp.108.128645
  110. Loub��ry, S., De Giorgi, J., Utz���Pugin, A., Demonsais, L., & Lopez���Molina, L. (2018). A maternally deposited endosperm cuticle contributes to the physiological defects of transparent testa seeds. Plant Physiology, 177(3), 1218���1233. https://doi.org/10.1104/pp.18.00416
  111. Ni��oles, R., Arjona, P., Azad, S. M., Hashim, A., Casa��, J., Bueso, E., Serrano, R., Espinosa, A., Molina, I., & Gadea, J. (2023). Kaempferol���3���rhamnoside overaccumulation in flavonoid 3������hydroxylase tt7 mutants compromises seed coat outer integument differentiation and seed longevity. New Phytologist, 238(4), 1461���1478. https://doi.org/10.1111/nph.18836
  112. Rains, M. K., Caron, C., Regan, S., & Molina, I. (2022). Chemical and molecular characterization of wound���induced suberization in poplar (Populus alba �� P. tremula) stem bark. Plants, 11(9), 1143. https://doi.org/10.3390/plants11091143
  113. Girard, A.���L., Mounet, F., Lemaire���Chamley, M., Gaillard, C., Elmorjani, K., Vivancos, J., Runavot, J.���L., Quemener, B., Petit, J., Germain, V., Rothan, C., Marion, D., & Bakan, B. (2012). Tomato GDSL1 is required for cutin deposition in the fruit cuticle. The Plant Cell, 24(7), 3119���3134. https://doi.org/10.1105/tpc.112.101055
  114. Lashbrooke, J. G., Adato, A., Lotan, O., Alkan, N., Tsimbalist, T., Rechav, K., Fernandez Moreno, J.���P., Widemann, E., Grausem, B., Pinot, F., Granell, A., Costa, F., & Aharoni, A. (2015). The tomato MIXTA���like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynthesis and assembly. Plant Physiology, 169, 2553���2571. https://doi.org/10.1104/pp.15.01145
  115. Lux, A., Morita, S., Abe, J., & Ito, K. (2005). An improved method for clearing and staining free���hand sections and whole���mount samples*. Annals of Botany, 96(6), 989���996. https://doi.org/10.1093/aob/mci266
  116. Marhavy, P., & Siddique, S. (2021). Histochemical staining of suberin in plant roots. Bio���Protocol, 11(3), e3904. https://doi.org/10.21769/BioProtoc.3904
  117. Wunderling, A., Ripper, D., Barra���Jimenez, A., Mahn, S., Sajak, K., Targem, M. B., & Ragni, L. (2018). A molecular framework to study periderm formation in Arabidopsis. New Phytologist, 219(1), 216���229. https://doi.org/10.1111/nph.15128
  118. Cant�����Pastor, A., Kajala, K., Shaar���Moshe, L., Manzano, C., Timilsena, P., De Bellis, D., Gray, S., Holbein, J., Yang, H., Mohammad, S., Nirmal, N., Suresh, K., Ursache, R., Mason, G. A., Gouran, M., West, D. A., Borowsky, A. T., Shackel, K. A., Sinha, N., ��� Brady, S. M. (2024). A suberized exodermis is required for tomato drought tolerance. Nature Plants, 10(1), 118���130. https://doi.org/10.1038/s41477���023���01567���x
  119. Ohse, M., Irohara, R., Iizuka, E., Arakawa, I., Kitin, P., Funada, R., & Nakaba, S. (2022). Sequent periderm formation and changes in the cellular contents of phloem parenchyma during rhytidome development in Cryptomeria japonica. Journal of Wood Science, 68(1), 19. https://doi.org/10.1186/s10086���022���02027���4
  120. Machado, A., Pereira, H., & Teixeira, R. T. (2013). Anatomy and development of the endodermis and phellem of Quercus suber L. roots. Microscopy and Microanalysis, 19(3), 525���534. https://doi.org/10.1017/S1431927613000287
  121. Kreszies, T., Shellakkutti, N., Osthoff, A., Yu, P., Baldauf, J. A., Zeisler���Diehl, V. V., Ranathunge, K., Hochholdinger, F., & Schreiber, L. (2019). Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: Analysis of chemical, transcriptomic and physiological responses. New Phytologist, 221(1), 180���194. https://doi.org/10.1111/nph.15351
  122. Kim, G., Ryu, H., & Sung, J. (2022). Hormonal crosstalk and root suberization for drought stress tolerance in plants. Biomolecules, 12(6), 811. https://doi.org/10.3390/biom12060811
  123. Baxter, I., Hosmani, P. S., Rus, A., Lahner, B., Borevitz, J. O., Muthukumar, B., Mickelbart, M. V., Schreiber, L., Franke, R. B., & Salt, D. E. (2009). Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genetics, 5(5), e1000492. https://doi.org/10.1371/journal.pgen.1000492
  124. Barberon, M., Vermeer, J. E. M., De Bellis, D., Wang, P., Naseer, S., Andersen, T. G., Humbel, B. M., Nawrath, C., Takano, J., Salt, D. E., & Geldner, N. (2016). Adaptation of root function by nutrient���induced plasticity of endodermal differentiation. Cell, 164(3), 447���459. https://doi.org/10.1016/j.cell.2015.12.021
  125. Ursache, R., De Jesus Vieira Teixeira, C., D��nervaud Tendon, V., Gully, K., De Bellis, D., Schmid���Siegert, E., Grube Andersen, T., Shekhar, V., Calderon, S., Pradervand, S., Nawrath, C., Geldner, N., & Vermeer, J. E. M. (2021). GDSL���domain proteins have key roles in suberin polymerization and degradation. Nature Plants, 7(3), 353���364. https://doi.org/10.1038/s41477���021���00862���9
  126. Chen, Y.���H., Straube, J., Khanal, B. P., Knoche, M., & Debener, T. (2020). Russeting in apple is initiated after exposure to moisture ends���I. Histological evidence. Plants, 9(10), 1293. https://doi.org/10.3390/plants9101293
  127. Matschi, S., Vasquez, M. F., Bourgault, R., Steinbach, P., Chamness, J., Kaczmar, N., Gore, M. A., Molina, I., & Smith, L. G. (2020). Structure���function analysis of the maize bulliform cell cuticle and its potential role in dehydration and leaf rolling. Plant Direct, 4(10), e00282. https://doi.org/10.1002/pld3.282
  128. Sexauer, M., Shen, D., Sch��n, M., Andersen, T. G., & Markmann, K. (2021). Visualizing polymeric components that define distinct root barriers across plant lineages. Development, 148(23), dev199820. https://doi.org/10.1242/dev.199820
  129. Greenspan, P., Mayer, E. P., & Fowler, S. D. (1985). Nile red: A selective fluorescent stain for intracellular lipid droplets. The Journal of Cell Biology, 100(3), 965���973. https://doi.org/10.1083/jcb.100.3.965
  130. Pinzon, N. M., Aukema, K. G., Gralnick, J. A., & Wackett, L. P. (2011). Nile red detection of bacterial hydrocarbons and ketones in a high���throughput format. mBio, 2(4), e00109���e00111. https://doi.org/10.1128/mBio.00109���11
  131. Rostron, K. A., & Lawrence, C. L. (2017). Nile red staining of neutral lipids in yeast. In C. Pellicciari, & M. Biggiogera (Eds.), Histochemistry of single molecules (Vol. 1560, pp. 219���229). Springer. https://doi.org/10.1007/978���1���4939���6788���9_16
  132. Waduwara, C. I., Walcott, S. E., & Peterson, C. A. (2008). Suberin lamellae of the onion root endodermis: Their pattern of development and continuity. Botany, 86(6), 623���632. https://doi.org/10.1139/B08���038
  133. Leal, A. R., Barros, P. M., Parizot, B., Sapeta, H., Vangheluwe, N., Andersen, T. G., Beeckman, T., & Oliveira, M. M. (2022). Translational profile of developing phellem cells in Arabidopsis thaliana roots. The Plant Journal, 110(3), 899���915. https://doi.org/10.1111/tpj.15691
  134. Dobrowolska, I., Majchrzak, O., Baldwin, T. C., & Kurczynska, E. U. (2012). Differences in protodermal cell wall structure in zygotic and somatic embryos of Daucus carota (L.) cultured on solid and in liquid media. Protoplasma, 249(1), 117���129. https://doi.org/10.1007/s00709���011���0268���3
  135. Tang, J., Yang, X., Xiao, C., Li, J., Chen, Y., Li, R., Li, S., L��, S., & Hu, H. (2020). GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytologist, 228(6), 1880���1896. https://doi.org/10.1111/nph.16741
  136. Singh, D., Blicharz, S., Stefanowicz, K., Ragni, L., Michalak, K., Bagniewska���Zadworna, A., & Malinowski, R. (2022). Combining clearing and fluorescence microscopy for visualising changes in gene expression and physiological responses to Plasmodiophora brassicae. Journal of Visualized Experiments, 186, 64297. https://doi.org/10.3791/64297
  137. Grienenberger, E., & Quilichini, T. D. (2021). The toughest material in the plant kingdom: An update on sporopollenin. Frontiers in Plant Science, 12, 703864. https://doi.org/10.3389/fpls.2021.703864
  138. Qiao, Y., Hou, B., & Qi, X. (2023). Biosynthesis and transport of pollen coat precursors in angiosperms. Nature Plants, 9(6), 864���876. https://doi.org/10.1038/s41477���023���01413���0
  139. Glinkerman, C. M., Lin, S., Ni, J., Li, F.���S., Zhao, X., & Weng, J.���K. (2022). Sporopollenin���inspired design and synthesis of robust polymeric materials. Communications Chemistry, 5(1), 110. https://doi.org/10.1038/s42004���022���00729���w
  140. Jia, X.���L., Xue, J.���S., Zhang, F., Yao, C., Shen, S.���Y., Sui, C.���X., Peng, Y.���J., Xu, Q.���L., Feng, Y.���F., Hu, W.���J., Xu, P., & Yang, Z.���N. (2021). A dye combination for the staining of pollen coat and pollen wall. Plant Reproduction, 34(2), 91���101. https://doi.org/10.1007/s00497���021���00412���5
  141. Edlund, A. F., Zheng, Q., Lowe, N., Kuseryk, S., Ainsworth, K. L., Lyles, R. H., Sibener, S. J., & Preuss, D. (2016). Pollen from Arabidopsis thaliana and other Brassicaceae are functionally omniaperturate. American Journal of Botany, 103(6), 1006���1019. https://doi.org/10.3732/ajb.1600031
  142. Ranjan, R., Malik, N., Sharma, S., Agarwal, P., Kapoor, S., & Tyagi, A. K. (2022). OsCPK29 interacts with MADS68 to regulate pollen development in rice. Plant Science, 321, 111297. https://doi.org/10.1016/j.plantsci.2022.111297
  143. Silv��rio, A., & De Araujo Mariath, J. E. (2014). Comparative structure of the pollen in species of Passiflora: Insights from the pollen wall and cytoplasm contents. Plant Systematics and Evolution, 300(2), 347���358. https://doi.org/10.1007/s00606���013���0887���6
  144. Lora, J., Herrero, M., & Hormaza, J. I. (2014). Microspore development in Annona (Annonaceae): Differences between monad and tetrad pollen. American Journal of Botany, 101(9), 1508���1518. https://doi.org/10.3732/ajb.1400312
  145. Jin, L., & Mackey, D. M. (2017). Measuring callose deposition, an indicator of cell wall reinforcement, during bacterial infection in Arabidopsis. In L. Shan, & P. He (Eds.), Plant pattern recognition receptors (Vol. 1578, pp. 195���205). Springer. https://doi.org/10.1007/978���1���4939���6859���6_16
  146. Johnson, S. A., & McCormick, S. (2001). Pollen germinates precociously in the anthers of raring���to���go, an Arabidopsis gametophytic mutant. Plant Physiology, 126(2), 685���695. https://doi.org/10.1104/pp.126.2.685
  147. Mondol, P. C., Xu, D., Duan, L., Shi, J., Wang, C., Chen, X., Chen, M., Hu, J., Liang, W., & Zhang, D. (2020). Defective pollen wall 3 (DPW3), a novel alpha integrin���like protein, is required for pollen wall formation in rice. New Phytologist, 225(2), 807���822. https://doi.org/10.1111/nph.16161
  148. Guerriero, G., Piasecki, E., Berni, R., Xu, X., Legay, S., & Hausman, J.���F. (2020). Identification of callose synthases in stinging nettle and analysis of their expression in different tissues. International Journal of Molecular Sciences, 21(11), 3853. https://doi.org/10.3390/ijms21113853
  149. Kalmbach, L., Bourdon, M., Belevich, I., Safran, J., Lemaire, A., Heo, J., Otero, S., Blob, B., Pelloux, J., Jokitalo, E., & Helariutta, Y. (2023). Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long���distance phloem transport in Arabidopsis. Current Biology, 33(5), 926���939.e9. https://doi.org/10.1016/j.cub.2023.01.038
  150. Ernst, A. M., Jekat, S. B., Zielonka, S., M��ller, B., Neumann, U., R��ping, B., Twyman, R. M., Krzyzanek, V., Pr��fer, D., & Noll, G. A. (2012). Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proceedings of the National Academy of Sciences, 109(28), E1980���E1989. https://doi.org/10.1073/pnas.1202999109
  151. Zavaliev, R., & Epel, B. L. (2015). Imaging callose at plasmodesmata using aniline blue: Quantitative confocal microscopy. In M. Heinlein (Ed.), Plasmodesmata (Vol. 1217, pp. 105���119). Springer. https://doi.org/10.1007/978���1���4939���1523���1_7
  152. Stone, B. A., Evans, N. A., Bonig, I., & Clarke, A. E. (1984). The application of sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma, 122(3), 191���195. https://doi.org/10.1007/BF01281696
  153. Ahlborn, B., & Werner, D. (1992). 1,3��������glucan synthase on the peribacteroid membrane (symbiosome membrane) from soybean root nodules. Physiological and Molecular Plant Pathology, 40(5), 299���314. https://doi.org/10.1016/0885���5765(92)90013���L
  154. Nickle, T. C., & Meinke, D. W. (1998). A cytokinesis���defective mutant of Arabidopsis (cyt1) characterized by embryonic lethality, incomplete cell walls, and excessive callose accumulation. The Plant Journal, 15(3), 321���332. https://doi.org/10.1046/j.1365���313X.1998.00212.x
  155. Hough, T., Bernhardt, P., Knox, R. B., & Williams, E. G. (1985). Applications of fluorochromes to Pollen biology. Ii. The Dna probes ethidium bromide and Hoechst 33258 in conjunction with the callose���specific aniline blue fluorochrome. Stain Technology, 60(3), 155���162. https://doi.org/10.3109/10520298509113906
  156. Herburger, K., & Holzinger, A. (2016). Aniline blue and calcofluor white staining of callose and cellulose in the streptophyte green algae Zygnema and Klebsormidium. Bio���Protocol, 6(20), e1969. https://doi.org/10.21769/BioProtoc.1969
  157. Parra���Vega, V., Corral���Mart��nez, P., Rivas���Sendra, A., & Segu�����Simarro, J. M. (2015). Induction of embryogenesis in Brassica napus microspores produces a callosic subintinal layer and abnormal cell walls with altered levels of callose and cellulose. Frontiers in Plant Science, 6, 1018. https://doi.org/10.3389/fpls.2015.01018
  158. Kalmbach, L., H��maty, K., De Bellis, D., Barberon, M., Fujita, S., Ursache, R., Daraspe, J., & Geldner, N. (2017). Transient cell���specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nature Plants, 3(5), 17058. https://doi.org/10.1038/nplants.2017.58
  159. Alonso Baez, L., & Bacete, L. (2023). Cell wall dynamics: Novel tools and research questions. Journal of Experimental Botany, 74, 6448���6467. https://doi.org/10.1093/jxb/erad310
  160. Imoto, A., Yamada, M., Sakamoto, T., Okuyama, A., Ishida, T., Sawa, S., & Aida, M. (2021). A ClearSee���based clearing protocol for 3D visualization of Arabidopsis thaliana embryos. Plants, 10(2), 190. https://doi.org/10.3390/plants10020190
  161. Sakamoto, Y., Ishimoto, A., Sakai, Y., Sato, M., Nishihama, R., Abe, K., Sano, Y., Furuichi, T., Tsuji, H., Kohchi, T., & Matsunaga, S. (2022). Improved clearing method contributes to deep imaging of plant organs. Communications Biology, 5(1), 12. https://doi.org/10.1038/s42003���021���02955���9
  162. Musielak, T., B��rgel, P., Kolb, M., & Bayer, M. (2016). Use of SCRI renaissance 2200 (SR2200) as a versatile dye for imaging of developing embryos, whole ovules, pollen tubes and roots. Bio���Protocol, 6(18), e1935. https://doi.org/10.21769/BioProtoc.1935
  163. Smith, Z. R., & Long, J. A. (2010). Control of Arabidopsis apical���basal embryo polarity by antagonistic transcription factors. Nature, 464(7287), 423���426. https://doi.org/10.1038/nature08843
  164. Doblas, V. G., Smakowska���Luzan, E., Fujita, S., Alassimone, J., Barberon, M., Madalinski, M., Belkhadir, Y., & Geldner, N. (2017). Root diffusion barrier control by a vasculature���derived peptide binding to the SGN3 receptor. Science, 355(6322), 280���284. https://doi.org/10.1126/science.aaj1562
  165. Nakayama, T., Shinohara, H., Tanaka, M., Baba, K., Ogawa���Ohnishi, M., & Matsubayashi, Y. (2017). A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science, 355(6322), 284���286. https://doi.org/10.1126/science.aai9057
  166. Reyt, G., Ramakrishna, P., Salas���Gonz��lez, I., Fujita, S., Love, A., Tiemessen, D., Lapierre, C., Morreel, K., Calvo���Polanco, M., Flis, P., Geldner, N., Boursiac, Y., Boerjan, W., George, M. W., Castrillo, G., & Salt, D. E. (2021). Two chemically distinct root lignin barriers control solute and water balance. Nature Communications, 12(1), 2320. https://doi.org/10.1038/s41467���021���22550���0
  167. Wang, Z., Zhang, B., Chen, Z., Wu, M., Chao, D., Wei, Q., Xin, Y., Li, L., Ming, Z., & Xia, J. (2022). Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. The Plant Cell, 34(8), 2948���2968. https://doi.org/10.1093/plcell/koac140
  168. Bonawitz, N. D., Kim, J. I., Tobimatsu, Y., Ciesielski, P. N., Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B. S., Ladisch, M., & Chapple, C. (2014). Disruption of mediator rescues the stunted growth of a lignin���deficient Arabidopsis mutant. Nature, 509(7500), 376���380. https://doi.org/10.1038/nature13084
  169. Nishikawa, S., Zinkl, G. M., Swanson, R. J., Maruyama, D., & Preuss, D. (2005). Callose (�����1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biology, 5(1), 22. https://doi.org/10.1186/1471���2229���5���22
  170. Rocha, D. M., Vanzela, A. L. L., & Mariath, J. E. A. (2018). Comparative study of microgametogenesis in members of Cyperaceae and Juncaceae: A shift from permanent pollen tetrads to pseudomonads. Botanical Journal of the Linnean Society, 188(1), 59���73. https://doi.org/10.1093/botlinnean/boy041
  171. Nadiminti, P. P., Rookes, J. E., Boyd, B. J., & Cahill, D. M. (2015). Confocal laser scanning microscopy elucidation of the micromorphology of the leaf cuticle and analysis of its chemical composition. Protoplasma, 252(6), 1475���1486. https://doi.org/10.1007/s00709���015���0777���6

Grants

  1. RYC2021-033414-l/Ayudas Ram��n y Cajal
  2. JDC2022-049881-I/Juan de La Cierva Postdoctoral Fellowship
  3. PID2022-140851NA-I00/Spanish Ministry of Science and Innovation

MeSH Term

Cell Wall
Plants
Fluorescent Dyes
Plant Cells
Staining and Labeling

Chemicals

Fluorescent Dyes

Word Cloud

Created with Highcharts 10.0.0cellplantwallswallenvironmentaltissuesimagingstainstissuevariousdifferentgrowthcompositiontechniquesfluorescentdevelopednormalabilitychangesstressesmicroscopyreviewcomponentscompatibilityclearingwillPlantscontinuouslystressorsableenvironmentsspecializedmaintainprotectedyetinterconnectedbodyundergospecificprimarysecondaryessentialsuccessfullandcolonizationamongspeciesorgansremodelplantsbioticabioticplacemayhelpidentifystrategieswelltoolsplants'dynamicsresponsediscussadvancesparticularcleaningtimefacethroughoutlifetimegrowadaptallowedmodificationsensureadaptationcanvaryfundamentalcopemultiplebetterunderstandingtakingdevelopnewenhancesurvivalpreventpathogenattackSinceinventionnumerousdeterminestimulimainfocusLayDescription:subjectedlifespanevolvedthriveenablingdistinctalterationsadaptabilityCelldifferevendealmustcapacityGaininginsighttakecreatenovelimprovewithstandchallengesMultiplesinceintroductionanalyseAdvancementsproceduressignificantlyenhancedperformhigh-resolutionseveralfactorsinfluenceeffectivenessstainingspecimensnecessaryprocessincludingspecimen'ssizethicknesscomplexitypresenceautofluorescencemajoremphasisdiversehopeassistreadersselectingappropriatestaincombinationhighlightinterestImagingusingstains:beautydetailslight

Similar Articles

Cited By (1)