The antiemetic actions of GIP receptor agonism.

Tito Borner, Bart C De Jonghe, Matthew R Hayes
Author Information
  1. Tito Borner: Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States. ORCID
  2. Bart C De Jonghe: Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
  3. Matthew R Hayes: Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Abstract

Nausea and vomiting are primitive aspects of mammalian physiology and behavior that ensure survival. Unfortunately, both are ubiquitously present side effects of drug treatments for many chronic diseases with negative consequences on pharmacotherapy tolerance, quality of life, and prognosis. One of the most critical clinical examples is the profound emesis and nausea that occur in patients undergoing chemotherapy, which continue to be among the most distressing side effects, even with the use of modern antiemetic medications. Similarly, antiobesity/diabetes medications that target the glucagon-like peptide-1 system, despite their remarkable metabolic success, also cause nausea and vomiting in a significant number of patients. These side effects hinder the ability to administer higher dosages for optimal glycemic and weight management and represent the major reasons for treatment discontinuation. Our inability to effectively control these side effects highlights the need to anatomically, molecularly, and functionally characterize novel neural substrates that drive and inhibit nausea and emesis. Here, we discuss clinical and preclinical evidence that highlights the glucose-dependent insulinotropic peptide receptor system as a novel therapeutic central target for the management of nausea and emesis.

Keywords

References

  1. Cell Rep. 2022 Jun 14;39(11):110953 [PMID: 35705049]
  2. Mol Metab. 2019 Feb;20:51-62 [PMID: 30578168]
  3. Cell Rep. 2020 Apr 21;31(3):107543 [PMID: 32320650]
  4. Cell Metab. 2019 Apr 2;29(4):837-843.e5 [PMID: 30773465]
  5. Biochem Pharmacol. 2020 Oct;180:114187 [PMID: 32755557]
  6. Neurosci Lett. 1993 Jul 9;157(1):49-52 [PMID: 8233031]
  7. J Comp Psychol. 1983 Jun;97(2):140-53 [PMID: 6307586]
  8. Lancet. 2023 Aug 19;402(10402):613-626 [PMID: 37385275]
  9. Exp Brain Res. 2014 Aug;232(8):2471-81 [PMID: 24862507]
  10. N Engl J Med. 2021 Aug 5;385(6):503-515 [PMID: 34170647]
  11. Gastroenterol Nurs. 2005 Nov-Dec;28(6):469-80 [PMID: 16418583]
  12. Diabetes. 2022 Jul 1;71(7):1410-1423 [PMID: 35499381]
  13. Neuron. 2021 Feb 3;109(3):461-472.e5 [PMID: 33278342]
  14. Mol Metab. 2018 Dec;18:3-14 [PMID: 30473097]
  15. Cell Metab. 2019 Nov 5;30(5):987-996.e6 [PMID: 31447324]
  16. Physiol Behav. 2005 Jun 30;85(3):271-7 [PMID: 15939445]
  17. Front Pharmacol. 2018 Sep 04;9:913 [PMID: 30233361]
  18. Cancer Treat Res Commun. 2021;26:100278 [PMID: 33360668]
  19. Cell Rep. 2020 Jun 16;31(11):107768 [PMID: 32553160]
  20. Physiol Res. 2011;60(6):941-50 [PMID: 21995902]
  21. J Neurosci. 2017 Jan 11;37(2):362-370 [PMID: 28077715]
  22. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1746-55 [PMID: 17848629]
  23. Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1375-82 [PMID: 19710391]
  24. Expert Rev Endocrinol Metab. 2020 Nov;15(6):379-394 [PMID: 33030356]
  25. Trends Mol Med. 2016 May;22(5):359-376 [PMID: 27038883]
  26. J Clin Invest. 1993 Jan;91(1):301-7 [PMID: 8423228]
  27. Front Endocrinol (Lausanne). 2022 Mar 01;13:838410 [PMID: 35299971]
  28. Sci Transl Med. 2018 Dec 19;10(472): [PMID: 30567927]
  29. Support Care Cancer. 2000 May;8(3):175-9 [PMID: 10789956]
  30. Auton Neurosci. 2007 Mar 30;132(1-2):44-51 [PMID: 17092780]
  31. Br J Pharmacol. 2022 Feb;179(4):557-570 [PMID: 34323288]
  32. PLoS One. 2019 Jun 19;14(6):e0217458 [PMID: 31216290]
  33. Cell Metab. 2021 Apr 6;33(4):833-844.e5 [PMID: 33571454]
  34. Diabetes Metab Syndr Obes. 2017 Sep 29;10:403-412 [PMID: 29033597]
  35. Sci Transl Med. 2013 Oct 30;5(209):209ra151 [PMID: 24174327]
  36. N Engl J Med. 2008 Jun 5;358(23):2482-94 [PMID: 18525044]
  37. Behav Neurosci. 1988 Dec;102(6):942-52 [PMID: 2850815]
  38. Am J Gastroenterol. 2018 May;113(5):647-659 [PMID: 29545633]
  39. Psychopharmacology (Berl). 2004 Jan;171(2):156-61 [PMID: 13680081]
  40. JCI Insight. 2020 Sep 3;5(17): [PMID: 32730231]
  41. Diabetes Obes Metab. 2020 Jun;22(6):938-946 [PMID: 31984598]
  42. Breast Cancer. 2020 Jan;27(1):122-128 [PMID: 31407150]
  43. Diabetes. 2021 Sep;70(9):1938-1944 [PMID: 34176786]
  44. Annu Rev Physiol. 2021 Feb 10;83:127-151 [PMID: 33228454]
  45. N Engl J Med. 2022 Jul 21;387(3):205-216 [PMID: 35658024]
  46. Ann Palliat Med. 2019 Jan;8(1):50-58 [PMID: 29860861]
  47. Jpn J Pharmacol. 1988 Oct;48(2):303-6 [PMID: 3210455]
  48. Appl Physiol Nutr Metab. 2014 Jun;39(6):643-53 [PMID: 24869969]
  49. Nat Clin Pract Oncol. 2005 Mar;2(3):158-65 [PMID: 16264909]
  50. Lancet. 2018 Nov 17;392(10160):2180-2193 [PMID: 30293770]
  51. Tissue Barriers. 2023 Dec 14;:2292461 [PMID: 38095516]
  52. Support Care Cancer. 2018 Mar;26(Suppl 1):5-9 [PMID: 29556808]
  53. Diabetes Obes Metab. 2018 Jan;20(1):60-68 [PMID: 28598027]
  54. Biol Res Nurs. 2021 Oct;23(4):584-595 [PMID: 33789505]
  55. Physiol Behav. 2016 Jan 1;153:109-14 [PMID: 26522737]
  56. J Clin Endocrinol Metab. 2011 Jul;96(7):2027-31 [PMID: 21734003]
  57. Biochem Biophys Res Commun. 2017 Aug 19;490(2):247-252 [PMID: 28610922]
  58. Front Neuroendocrinol. 1994 Dec;15(4):301-20 [PMID: 7895890]
  59. Diabetes Obes Metab. 2020 Oct;22(10):1729-1741 [PMID: 32410372]
  60. Learn Behav. 2003 May;31(2):165-72 [PMID: 12882375]
  61. Nat Rev Endocrinol. 2013 Jul;9(7):425-33 [PMID: 23478327]
  62. J Clin Endocrinol Metab. 2020 Aug 1;105(8): [PMID: 32459834]
  63. Diabetes Obes Metab. 2018 Sep;20(9):2210-2219 [PMID: 29766634]
  64. Mol Metab. 2021 Apr;46:101139 [PMID: 33290902]
  65. Clin Transl Oncol. 2012 Jun;14(6):413-22 [PMID: 22634529]
  66. J Clin Endocrinol Metab. 1973 Nov;37(5):826-8 [PMID: 4749457]
  67. Science. 1974 Sep 6;185(4154):824-31 [PMID: 11785521]
  68. Genes Dev. 2016 Mar 1;30(5):489-501 [PMID: 26944676]
  69. Nat Metab. 2021 Apr;3(4):530-545 [PMID: 33767443]
  70. Oncogenesis. 2016 Feb 22;5:e200 [PMID: 26900952]
  71. Endocrinology. 1993 Dec;133(6):2861-70 [PMID: 8243312]
  72. Am J Manag Care. 2017 Sep;23(14 Suppl):S259-S265 [PMID: 28978206]
  73. Endocr Rev. 1995 Jun;16(3):390-410 [PMID: 7671853]
  74. Cell Metab. 2017 Aug 1;26(2):343-352.e2 [PMID: 28768173]
  75. JCI Insight. 2020 Mar 26;5(6): [PMID: 32213703]
  76. Mol Metab. 2019 Dec;30:72-130 [PMID: 31767182]
  77. Neuroscientist. 2008 Apr;14(2):182-94 [PMID: 18079557]
  78. Diabetes Obes Metab. 2018 Feb;20 Suppl 1:22-33 [PMID: 29364586]
  79. Eur J Pharmacol. 2014 Jan 5;722:38-47 [PMID: 24184670]
  80. Eur J Pharmacol. 2003 Jul 4;472(1-2):135-45 [PMID: 12860482]
  81. Curr Treat Options Oncol. 2020 Feb 5;21(2):14 [PMID: 32025954]
  82. Diabetes. 2021 Sep;70(9):1956-1961 [PMID: 34176783]
  83. JCI Insight. 2023 May 22;8(10): [PMID: 37212283]
  84. Gastroenterology. 2007 May;132(6):2131-57 [PMID: 17498508]
  85. Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R902-11 [PMID: 19225146]
  86. Diabetes. 2021 Nov;70(11):2545-2553 [PMID: 34380697]
  87. Nat Med. 2002 Jul;8(7):738-42 [PMID: 12068290]
  88. N Engl J Med. 2021 Mar 18;384(11):989-1002 [PMID: 33567185]
  89. Trends Endocrinol Metab. 2020 Jun;31(6):410-421 [PMID: 32396843]
  90. Diabetes Obes Metab. 2017 Mar;19(3):336-347 [PMID: 27860132]
  91. J Clin Invest. 2019 Aug 12;129(9):3786-3791 [PMID: 31403469]
  92. J Clin Med. 2022 Dec 24;12(1): [PMID: 36614945]
  93. Sci Rep. 2018 Jul 9;8(1):10310 [PMID: 29985439]
  94. Peptides. 2020 Mar;125:170194 [PMID: 31697967]
  95. Am J Manag Care. 2018 Oct;24(18 Suppl):S391-S397 [PMID: 30328690]
  96. Diabetes Ther. 2021 Jan;12(1):143-157 [PMID: 33325008]
  97. Cell Rep Med. 2021 Apr 30;2(5):100263 [PMID: 34095876]
  98. Mol Metab. 2023 Jul;73:101743 [PMID: 37245848]
  99. Am J Physiol Endocrinol Metab. 2015 Dec 15;309(12):E1008-18 [PMID: 26487006]
  100. J Med Chem. 2023 Aug 24;66(16):11237-11249 [PMID: 37506293]
  101. Expert Rev Endocrinol Metab. 2023 Mar;18(2):111-130 [PMID: 36908082]
  102. Pharmacol Biochem Behav. 1993 Aug;45(4):817-21 [PMID: 8415820]
  103. Mol Metab. 2022 Dec;66:101638 [PMID: 36400403]
  104. Peptides. 2020 Mar;125:170201 [PMID: 31751656]

Grants

  1. R01 DK128443/NIDDK NIH HHS
  2. DK128443/HHS | National Institutes of Health (NIH)

MeSH Term

Animals
Humans
Antiemetics
Vomiting
Quality of Life
Nausea
Mammals
Receptors, Gastrointestinal Hormone

Chemicals

Antiemetics
gastric inhibitory polypeptide receptor
Receptors, Gastrointestinal Hormone

Word Cloud

Created with Highcharts 10.0.0nauseasideeffectsemesisantiemeticvomitingclinicalpatientsmedicationstargetsystemmanagementhighlightsnovelglucose-dependentinsulinotropicpeptidereceptorNauseaprimitiveaspectsmammalianphysiologybehaviorensuresurvivalUnfortunatelyubiquitouslypresentdrugtreatmentsmanychronicdiseasesnegativeconsequencespharmacotherapytolerancequalitylifeprognosisOnecriticalexamplesprofoundoccurundergoingchemotherapycontinueamongdistressingevenusemodernSimilarlyantiobesity/diabetesglucagon-likepeptide-1despiteremarkablemetabolicsuccessalsocausesignificantnumberhinderabilityadministerhigherdosagesoptimalglycemicweightrepresentmajorreasonstreatmentdiscontinuationinabilityeffectivelycontrolneedanatomicallymolecularlyfunctionallycharacterizeneuralsubstratesdriveinhibitdiscusspreclinicalevidencetherapeuticcentralactionsGIPagonismgastricinhibitorypolypeptide

Similar Articles

Cited By