Combined Study of Gene Expression and Chromosome Three-Dimensional Structure in Escherichia coli During Growth Process.

Hao Zhang, Changjun Shao, Jian Wang, Yanan Chu, Jingfa Xiao, Yu Kang, Zhewen Zhang
Author Information
  1. Hao Zhang: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  2. Changjun Shao: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  3. Jian Wang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  4. Yanan Chu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  5. Jingfa Xiao: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  6. Yu Kang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China. kangy@big.ac.cn.
  7. Zhewen Zhang: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China. zhangzw@big.ac.cn. ORCID

Abstract

The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.

References

  1. Badrinarayanan A, Le TB, Laub MT (2015) Bacterial chromosome organization and segregation. Annu Rev Cell Dev Biol 31:171–199. https://doi.org/10.1146/annurev-cellbio-100814-125211 [DOI: 10.1146/annurev-cellbio-100814-125211]
  2. Krogh TJ, Møller-Jensen J, Kaleta C (2018) Impact of chromosomal architecture on the function and evolution of bacterial genomes. Front Microbiol 9:2019. https://doi.org/10.3389/fmicb.2018.02019 [DOI: 10.3389/fmicb.2018.02019]
  3. Le TB, Imakaev MV, Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342(6159):731–734. https://doi.org/10.1126/science.1242059 [DOI: 10.1126/science.1242059]
  4. Trussart M, Yus E, Martinez S, Baù D, Tahara YO, Pengo T, Widjaja M, Kretschmer S, Swoger J, Djordjevic S, Turnbull L, Whitchurch C, Miyata M, Marti-Renom MA, Lluch-Senar M, Serrano L (2017) Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat Commun 8:14665. https://doi.org/10.1038/ncomms14665 [DOI: 10.1038/ncomms14665]
  5. Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche JB, Mozziconacci J, Murray H, Koszul R, Nollmann M (2015) Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59(4):588–602. https://doi.org/10.1016/j.molcel.2015.07.020 [DOI: 10.1016/j.molcel.2015.07.020]
  6. Wang X, Le TB, Lajoie BR, Dekker J, Laub MT, Rudner DZ (2015) Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 29(15):1661–1675. https://doi.org/10.1101/gad.265876.115 [DOI: 10.1101/gad.265876.115]
  7. Cagliero C, Grand RS, Jones MB, Jin DJ, O’Sullivan JM (2013) Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 41(12):6058–6071. https://doi.org/10.1093/nar/gkt325 [DOI: 10.1093/nar/gkt325]
  8. Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R (2018) Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172(4):771-783.e718. https://doi.org/10.1016/j.cell.2017.12.027 [DOI: 10.1016/j.cell.2017.12.027]
  9. Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13(6):773–780. https://doi.org/10.1016/j.mib.2010.09.013 [DOI: 10.1016/j.mib.2010.09.013]
  10. Dame RT, Rashid FM, Grainger DC (2020) Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat Rev Genet 21(4):227–242. https://doi.org/10.1038/s41576-019-0185-4 [DOI: 10.1038/s41576-019-0185-4]
  11. Guo F, Adhya S (2007) Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling. Proc Natl Acad Sci USA 104(11):4309–4314. https://doi.org/10.1073/pnas.0611686104 [DOI: 10.1073/pnas.0611686104]
  12. Nolivos S, Sherratt D (2014) The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev 38(3):380–392. https://doi.org/10.1111/1574-6976.12045 [DOI: 10.1111/1574-6976.12045]
  13. Espéli O, Borne R, Dupaigne P, Thiel A, Gigant E, Mercier R, Boccard F (2012) A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. Embo J 31(14):3198–3211. https://doi.org/10.1038/emboj.2012.128 [DOI: 10.1038/emboj.2012.128]
  14. Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8(3):185–195. https://doi.org/10.1038/nrmicro2261 [DOI: 10.1038/nrmicro2261]
  15. Le TB, Laub MT (2016) Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. Embo J 35(14):1582–1595. https://doi.org/10.15252/embj.201593561 [DOI: 10.15252/embj.201593561]
  16. Valens M, Penaud S, Rossignol M, Cornet F, Boccard F (2004) Macrodomain organization of the Escherichia coli chromosome. Embo J 23(21):4330–4341. https://doi.org/10.1038/sj.emboj.7600434 [DOI: 10.1038/sj.emboj.7600434]
  17. Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ (2008) Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190(3):1084–1096. https://doi.org/10.1128/jb.01092-07 [DOI: 10.1128/jb.01092-07]
  18. Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T (2008) The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68(5):1128–1148. https://doi.org/10.1111/j.1365-2958.2008.06229.x [DOI: 10.1111/j.1365-2958.2008.06229.x]
  19. Jin DJ, Cabrera JE (2006) Coupling the distribution of RNA polymerase to global gene regulation and the dynamic structure of the bacterial nucleoid in Escherichia coli. J Struct Biol 156(2):284–291. https://doi.org/10.1016/j.jsb.2006.07.005 [DOI: 10.1016/j.jsb.2006.07.005]
  20. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923 [DOI: 10.1038/nmeth.1923]
  21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352 [DOI: 10.1093/bioinformatics/btp352]
  22. Anders S, Pyl PT, Huber W (2015) HTSeq–a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638 [DOI: 10.1093/bioinformatics/btu638]
  23. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. https://doi.org/10.1038/nprot.2013.084 [DOI: 10.1038/nprot.2013.084]
  24. Yu G, Wang LG, Han Y, He QY (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118 [DOI: 10.1089/omi.2011.0118]
  25. Karp PD, Ong WK, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford PE, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler IM, Paulsen I (2018) The EcoCyc database. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0006-2018 [DOI: 10.1128/ecosalplus.ESP-0006-2018]
  26. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9(10):999–1003. https://doi.org/10.1038/nmeth.2148 [DOI: 10.1038/nmeth.2148]
  27. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, Heard E, Dekker J, Barillot E (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259. https://doi.org/10.1186/s13059-015-0831-x [DOI: 10.1186/s13059-015-0831-x]
  28. Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43(11):1059–1065. https://doi.org/10.1038/ng.947 [DOI: 10.1038/ng.947]
  29. Cournac A, Marie-Nelly H, Marbouty M, Koszul R, Mozziconacci J (2012) Normalization of a chromosomal contact map. BMC Genomics 13:436. https://doi.org/10.1186/1471-2164-13-436 [DOI: 10.1186/1471-2164-13-436]
  30. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. https://doi.org/10.1038/nature11082 [DOI: 10.1038/nature11082]
  31. Jaishankar J, Srivastava P (2017) Molecular basis of stationary phase survival and applications. Front Microbiol 8:2000. https://doi.org/10.3389/fmicb.2017.02000 [DOI: 10.3389/fmicb.2017.02000]
  32. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187(5):1591–1603. https://doi.org/10.1128/jb.187.5.1591-1603.2005 [DOI: 10.1128/jb.187.5.1591-1603.2005]
  33. Brown L, Gentry D, Elliott T, Cashel M (2002) DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 184(16):4455–4465. https://doi.org/10.1128/jb.184.16.4455-4465.2002 [DOI: 10.1128/jb.184.16.4455-4465.2002]
  34. Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M (2001) CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol 39(6):1572–1584. https://doi.org/10.1046/j.1365-2958.2001.02345.x [DOI: 10.1046/j.1365-2958.2001.02345.x]
  35. Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173(24):7918–7924. https://doi.org/10.1128/jb.173.24.7918-7924.1991 [DOI: 10.1128/jb.173.24.7918-7924.1991]
  36. Jin DJ, Cagliero C, Zhou YN (2012) Growth rate regulation in Escherichia coli. FEMS Microbiol Rev 36(2):269–287. https://doi.org/10.1111/j.1574-6976.2011.00279.x [DOI: 10.1111/j.1574-6976.2011.00279.x]
  37. Zhang Y, Zhang H, Zhang Z, Qian Q, Zhang Z, Xiao J (2023) ProPan: a comprehensive database for profiling prokaryotic pan-genome dynamics. Nucleic Acids Res 51(D1):D767-d776. https://doi.org/10.1093/nar/gkac832 [DOI: 10.1093/nar/gkac832]
  38. Dong T, Kirchhof MG, Schellhorn HE (2008) RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 279(3):267–277. https://doi.org/10.1007/s00438-007-0311-4 [DOI: 10.1007/s00438-007-0311-4]
  39. Talukder A, Ishihama A (2015) Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli. Sci China Life Sci 58(9):902–911. https://doi.org/10.1007/s11427-015-4898-0 [DOI: 10.1007/s11427-015-4898-0]
  40. Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O (2015) Survival guide: Escherichia coli in the stationary phase. Acta Naturae 7(4):22–33 [DOI: 10.32607/20758251-2015-7-4-22-33]
  41. Bergkessel M, Basta DW, Newman DK (2016) The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 14(9):549–562. https://doi.org/10.1038/nrmicro.2016.107 [DOI: 10.1038/nrmicro.2016.107]
  42. Shimizu K (2013) Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochem 2013:645983. https://doi.org/10.1155/2013/645983 [DOI: 10.1155/2013/645983]
  43. Shimizu K (2013) Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4(1):1–35. https://doi.org/10.3390/metabo4010001 [DOI: 10.3390/metabo4010001]
  44. Kim J, Yoshimura SH, Hizume K, Ohniwa RL, Ishihama A, Takeyasu K (2004) Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. Nucleic Acids Res 32(6):1982–1992. https://doi.org/10.1093/nar/gkh512 [DOI: 10.1093/nar/gkh512]
  45. Ohniwa RL, Morikawa K, Kim J, Ohta T, Ishihama A, Wada C, Takeyasu K (2006) Dynamic state of DNA topology is essential for genome condensation issn bacteria. Embo J 25(23):5591–5602. https://doi.org/10.1038/sj.emboj.7601414 [DOI: 10.1038/sj.emboj.7601414]
  46. Dorman CJ (2013) Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat Rev Microbiol 11(5):349–355. https://doi.org/10.1038/nrmicro3007 [DOI: 10.1038/nrmicro3007]
  47. Cameron AD, Dorman CJ (2012) A fundamental regulatory mechanism operating through OmpR and DNA topology controls expression of Salmonella pathogenicity islands SPI-1 and SPI-2. PLoS Genet 8(3):e1002615. https://doi.org/10.1371/journal.pgen.1002615 [DOI: 10.1371/journal.pgen.1002615]
  48. Chai Q, Singh B, Peisker K, Metzendorf N, Ge X, Dasgupta S, Sanyal S (2014) Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. J Biol Chem 289(16):11342–11352. https://doi.org/10.1074/jbc.M114.557348 [DOI: 10.1074/jbc.M114.557348]
  49. Chen T, Chen X, Zhang S, Zhu J, Tang B, Wang A, Dong L, Zhang Z, Yu C, Sun Y, Chi L, Chen H, Zhai S, Sun Y, Lan L, Zhang X, Xiao J, Bao Y, Wang Y, Zhang Z, Zhao W (2021) The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinform 19(4):578–583. https://doi.org/10.1016/j.gpb.2021.08.001 [DOI: 10.1016/j.gpb.2021.08.001]
  50. CNCB-NGDC Members and Partners (2023) Database resources of the national genomics data center, China national center for bioinformation in 2023. Nucleic Acids Res 51(D1):D18-d28. https://doi.org/10.1093/nar/gkac1073 [DOI: 10.1093/nar/gkac1073]

Grants

  1. 32170669/National Natural Science Foundation of China
  2. 31471248/National Natural Science Foundation of China
  3. 2022YFC2602302/National Key Research Program of China
  4. 2020YFA0907001/National Key Research Program of China
  5. 2021YFC2301000/National Key Research Program of China

MeSH Term

Escherichia coli
Escherichia coli Proteins
Transcriptome
Chromosomes, Bacterial
Chromosome Structures
Gene Expression Regulation, Bacterial

Chemicals

Escherichia coli Proteins

Word Cloud

Created with Highcharts 10.0.0phasecoliEexponentialstructurechromosomegenesHi-CgrowthstationaryCIDdifferentpatternplaysrolerelationshipregulatinggeneexpressionglobalthree-dimensionalchangestranscriptionalregulationanalysisdatachromosomalinteractiondistributedboundaryregionsbacteriauniqueorganizationimportantmaintainingspatiallocationConverselytranscriptionalsobacterialchromosomesThereforecombineRNA-SeqtechnologyexplorestagesTranscriptomeindicatessynthesizesmanyribosomespeptidoglycancontrastundergoescatabolismreflectingadaptabilityenvironmentalconditionsAnalyzingshowshigherfrequencydefineddomainsCIDsStilllong-distanceinteractionsreplicationterminationregionlowerCombiningtranscriptomeconcludehighlyexpressedlikelytimehigh-expressionribosomalclustersformingclearerboundariesalteredclarifyingsynergytworegulatoryaspectsCombinedStudyGeneExpressionChromosomeThree-DimensionalStructureEscherichiaGrowthProcess

Similar Articles

Cited By (2)