Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells.

Jonas L Fowler, Sherry Li Zheng, Alana Nguyen, Angela Chen, Xiaochen Xiong, Timothy Chai, Julie Y Chen, Daiki Karigane, Allison M Banuelos, Kouta Niizuma, Kensuke Kayamori, Toshinobu Nishimura, M Kyle Cromer, David Gonzalez-Perez, Charlotte Mason, Daniel Dan Liu, Leyla Yilmaz, Lucile Miquerol, Matthew H Porteus, Vincent C Luca, Ravindra Majeti, Hiromitsu Nakauchi, Kristy Red-Horse, Irving L Weissman, Lay Teng Ang, Kyle M Loh
Author Information
  1. Jonas L Fowler: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
  2. Sherry Li Zheng: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
  3. Alana Nguyen: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
  4. Angela Chen: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
  5. Xiaochen Xiong: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
  6. Timothy Chai: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
  7. Julie Y Chen: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
  8. Daiki Karigane: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
  9. Allison M Banuelos: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
  10. Kouta Niizuma: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
  11. Kensuke Kayamori: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
  12. Toshinobu Nishimura: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
  13. M Kyle Cromer: Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
  14. David Gonzalez-Perez: Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA.
  15. Charlotte Mason: Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA.
  16. Daniel Dan Liu: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
  17. Leyla Yilmaz: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
  18. Lucile Miquerol: Aix-Marseille Universit��, CNRS UMR 7288, IBDM, Marseille 13288, France.
  19. Matthew H Porteus: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
  20. Vincent C Luca: Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA.
  21. Ravindra Majeti: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
  22. Hiromitsu Nakauchi: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
  23. Kristy Red-Horse: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
  24. Irving L Weissman: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
  25. Lay Teng Ang: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA. Electronic address: layteng@stanford.edu.
  26. Kyle M Loh: Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address: kyleloh@stanford.edu.

Abstract

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (���E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.

Keywords

References

  1. Nature. 2010 Mar 4;464(7285):112-5 [PMID: 20154732]
  2. Nat Methods. 2018 Dec;15(12):1045-1047 [PMID: 30504872]
  3. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):407-11 [PMID: 8552649]
  4. Nat Cell Biol. 2016 Jan;18(1):21-32 [PMID: 26619147]
  5. Dev Cell. 2009 Feb;16(2):180-95 [PMID: 19217421]
  6. Genesis. 2011 Feb;49(2):83-91 [PMID: 21344610]
  7. Dev Dyn. 2011 Sep;240(9):2153-65 [PMID: 21793101]
  8. Cell. 2013 Sep 26;155(1):215-27 [PMID: 24074870]
  9. Science. 1988 Jul 1;241(4861):58-62 [PMID: 2898810]
  10. Development. 2011 Mar;138(6):1017-31 [PMID: 21343360]
  11. PLoS One. 2011;6(4):e18556 [PMID: 21602908]
  12. Nat Rev Mol Cell Biol. 2017 Jan;18(1):56-67 [PMID: 27876786]
  13. Cell Stem Cell. 2017 Mar 2;20(3):315-328.e7 [PMID: 28215825]
  14. Cell Rep. 2016 Jun 7;15(10):2185-2199 [PMID: 27239041]
  15. Cell Res. 2012 Jan;22(1):194-207 [PMID: 21862970]
  16. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  17. Genes Dev. 1995 Dec 15;9(24):3027-37 [PMID: 8543149]
  18. Curr Opin Genet Dev. 1994 Aug;4(4):550-5 [PMID: 7950323]
  19. Wiley Interdiscip Rev Dev Biol. 2020 May;9(3):e368 [PMID: 31746148]
  20. J Exp Med. 2011 Nov 21;208(12):2417-27 [PMID: 22042975]
  21. Cell Stem Cell. 2011 Dec 2;9(6):541-52 [PMID: 22136929]
  22. Nature. 2017 May 25;545(7655):439-445 [PMID: 28514438]
  23. Stem Cells Int. 2021 Aug 11;2021:9919422 [PMID: 34434242]
  24. Stem Cell Reports. 2020 Jan 14;14(1):122-137 [PMID: 31839543]
  25. Development. 2017 Jul 1;144(13):2323-2337 [PMID: 28676567]
  26. Genome Biol. 2020 Jul 1;21(1):157 [PMID: 32611441]
  27. Exp Hematol. 2019 Mar;71:24-31 [PMID: 30590093]
  28. Nat Neurosci. 2010 Jan;13(1):133-40 [PMID: 20023653]
  29. Dev Cell. 2006 Oct;11(4):519-33 [PMID: 17011491]
  30. Nat Cell Biol. 2022 May;24(5):616-624 [PMID: 35484246]
  31. Development. 1991 Nov;113(3):891-911 [PMID: 1821858]
  32. Development. 2018 Jun 26;145(12): [PMID: 29945988]
  33. Cell Stem Cell. 2017 Mar 2;20(3):329-344.e7 [PMID: 28089908]
  34. Blood. 2008 Feb 15;111(4):1876-84 [PMID: 18032708]
  35. Nature. 2007 Jun 21;447(7147):1007-11 [PMID: 17581586]
  36. J Exp Med. 2019 Jul 1;216(7):1599-1614 [PMID: 31076455]
  37. Exp Hematol. 2002 Jan;30(1):49-57 [PMID: 11823037]
  38. Cell Res. 2022 Apr;32(4):333-348 [PMID: 35079138]
  39. Stem Cell Reports. 2015 Oct 13;5(4):597-608 [PMID: 26321144]
  40. Exp Hematol. 2008 Oct;36(10):1377-89 [PMID: 18922365]
  41. Blood. 2003 Nov 15;102(10):3478-82 [PMID: 12946998]
  42. Cell Rep. 2017 Dec 19;21(12):3514-3523 [PMID: 29262330]
  43. Science. 1998 Nov 6;282(5391):1145-7 [PMID: 9804556]
  44. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2788-92 [PMID: 1672767]
  45. Nature. 2018 Jul;559(7714):356-362 [PMID: 29973725]
  46. Nat Commun. 2018 Jun 28;9(1):2517 [PMID: 29955049]
  47. Nat Commun. 2013;4:2609 [PMID: 24153254]
  48. Nature. 2010 Mar 4;464(7285):108-11 [PMID: 20154733]
  49. Blood. 2006 Sep 15;108(6):2095-105 [PMID: 16757688]
  50. Dev Cell. 2005 Mar;8(3):365-75 [PMID: 15737932]
  51. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  52. Science. 2014 Sep 19;345(6203):1509-12 [PMID: 25237102]
  53. Cell Stem Cell. 2014 Feb 6;14(2):237-52 [PMID: 24412311]
  54. Cell. 2005 Jul 1;121(7):1109-21 [PMID: 15989959]
  55. J Clin Invest. 2015 May;125(5):2032-45 [PMID: 25866967]
  56. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  57. Cell. 2009 Mar 20;136(6):1136-47 [PMID: 19303855]
  58. Cell. 2016 Jul 14;166(2):451-467 [PMID: 27419872]
  59. Nature. 2019 Feb;566(7745):490-495 [PMID: 30787436]
  60. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):221-6 [PMID: 14688412]
  61. Nat Rev Mol Cell Biol. 2017 Aug;18(8):477-494 [PMID: 28537573]
  62. EMBO J. 2000 Jun 1;19(11):2465-74 [PMID: 10835345]
  63. Wiley Interdiscip Rev Dev Biol. 2012 Jul-Aug;1(4):603-8 [PMID: 23801536]
  64. Science. 2018 Feb 23;359(6378):935-939 [PMID: 29472486]
  65. J Immunol. 2005 May 15;174(10):6477-89 [PMID: 15879151]
  66. Cell. 2014 Apr 24;157(3):549-64 [PMID: 24766805]
  67. Stem Cell Reports. 2015 Nov 10;5(5):728-740 [PMID: 26489895]
  68. Cell Stem Cell. 2019 Aug 1;25(2):185-192.e3 [PMID: 31204177]
  69. Cell. 2009 May 15;137(4):736-48 [PMID: 19450519]
  70. Development. 1994 Jul;120(7):1919-28 [PMID: 7924997]
  71. Blood. 2008 Nov 1;112(9):3543-53 [PMID: 18948588]
  72. Blood. 2006 Jul 15;108(2):737-44 [PMID: 16569764]
  73. Stem Cell Reports. 2014 Mar 27;2(4):449-56 [PMID: 24749070]
  74. Cell. 2015 Jan 15;160(1-2):241-52 [PMID: 25594182]
  75. Trends Biotechnol. 2023 Jul;41(7):907-922 [PMID: 36858941]
  76. Genes Dev. 2012 Nov 15;26(22):2499-511 [PMID: 23105005]
  77. Cell Stem Cell. 2013 Oct 3;13(4):459-70 [PMID: 24094326]
  78. Nat Commun. 2013;4:1564 [PMID: 23463007]
  79. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  80. Dev Cell. 2015 May 4;33(3):247-59 [PMID: 25920569]
  81. Genes Dev. 1995 Sep 1;9(17):2105-16 [PMID: 7657163]
  82. Science. 1996 Jul 12;273(5272):242-5 [PMID: 8662508]
  83. Cell Stem Cell. 2008 Dec 4;3(6):625-36 [PMID: 19041779]
  84. Nat Biotechnol. 2016 Nov;34(11):1168-1179 [PMID: 27748754]
  85. Nat Genet. 2016 Oct;48(10):1193-203 [PMID: 27526324]
  86. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  87. Cell Stem Cell. 2015 Apr 2;16(4):357-66 [PMID: 25842976]
  88. Cell. 2007 Aug 10;130(3):470-83 [PMID: 17655922]
  89. Nat Biotechnol. 2014 Jun;32(6):554-61 [PMID: 24837661]
  90. Stem Cell Reports. 2014 Mar 20;2(4):457-72 [PMID: 24749071]
  91. Nat Med. 2021 Apr;27(4):677-687 [PMID: 33737751]
  92. Curr Protoc Stem Cell Biol. 2008 Jan;Chapter 2:Unit 2A.6 [PMID: 18770635]
  93. Nat Cell Biol. 2016 Jun;18(6):595-606 [PMID: 27183470]
  94. Nat Cell Biol. 2016 Nov;18(11):1111-1117 [PMID: 27723718]
  95. Development. 2018 Jan 29;145(2): [PMID: 29361566]
  96. Leukemia. 2023 Jun;37(6):1361-1374 [PMID: 37095209]
  97. Nature. 2009 Jun 25;459(7250):1131-5 [PMID: 19440194]
  98. Blood. 2005 Dec 1;106(12):3988-94 [PMID: 16091451]
  99. Dev Biol. 2006 Apr 15;292(2):506-18 [PMID: 16457800]
  100. Development. 1987 Jan;99(1):109-26 [PMID: 3652985]
  101. Nature. 2005 May 5;435(7038):98-104 [PMID: 15875024]
  102. Nature. 2018 Jan 25;553(7689):506-510 [PMID: 29342143]
  103. J Exp Med. 2010 Dec 20;207(13):2817-30 [PMID: 21098095]
  104. J Exp Med. 2015 May 4;212(5):665-80 [PMID: 25870199]
  105. Blood. 2013 Oct 3;122(14):2338-45 [PMID: 23863896]
  106. Cell Rep. 2018 May 22;23(8):2467-2481 [PMID: 29791856]
  107. Cell. 2019 Sep 5;178(6):1509-1525.e19 [PMID: 31491389]
  108. Science. 2010 Nov 5;330(6005):841-5 [PMID: 20966214]
  109. J Clin Invest. 2014 Nov;124(11):4899-914 [PMID: 25271623]
  110. Cell. 1998 May 29;93(5):741-53 [PMID: 9630219]
  111. Rapid Commun Mass Spectrom. 2001;15(4):297-303 [PMID: 11223962]
  112. Cell Stem Cell. 2021 Jan 7;28(1):48-62.e6 [PMID: 33417871]
  113. Cell. 2020 Apr 30;181(3):557-573.e18 [PMID: 32259484]
  114. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  115. Cell Rep. 2018 Feb 20;22(8):2190-2205 [PMID: 29466743]
  116. Stem Cell Reports. 2015 Jul 14;5(1):125-38 [PMID: 26050929]
  117. Front Immunol. 2019 Nov 19;10:2694 [PMID: 31803196]
  118. Nat Commun. 2020 Jun 1;11(1):2713 [PMID: 32483127]
  119. Nat Commun. 2022 Mar 24;13(1):1584 [PMID: 35332125]
  120. Science. 2015 Feb 20;347(6224):847-53 [PMID: 25700513]
  121. Cell Res. 2019 Nov;29(11):881-894 [PMID: 31501518]
  122. J Immunol. 2010 Jul 15;185(2):867-76 [PMID: 20548034]
  123. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  124. Dev Biol. 2023 Jun;498:77-86 [PMID: 37037405]
  125. PLoS One. 2016 Aug 08;11(8):e0159277 [PMID: 27500400]
  126. Cell Res. 2020 May;30(5):376-392 [PMID: 32203131]
  127. Cell Stem Cell. 2020 Nov 5;27(5):822-839.e8 [PMID: 32946788]
  128. J Exp Med. 2015 May 4;212(5):633-48 [PMID: 25870201]
  129. Dev Cell. 2001 Jul;1(1):37-49 [PMID: 11703922]
  130. Nature. 2010 Mar 4;464(7285):116-20 [PMID: 20154729]
  131. Nat Cell Biol. 2023 Aug;25(8):1135-1145 [PMID: 37460694]
  132. Dev Biol. 1970 Jul;22(3):461-75 [PMID: 5423312]
  133. Blood. 2004 Nov 15;104(10):3097-105 [PMID: 15251982]
  134. Nat Rev Immunol. 2013 May;13(5):336-48 [PMID: 23618830]
  135. Development. 2010 Nov;137(21):3651-61 [PMID: 20876651]
  136. J Exp Med. 2011 Jun 6;208(6):1305-15 [PMID: 21624936]
  137. Sci Rep. 2018 Apr 12;8(1):5913 [PMID: 29651133]
  138. PLoS One. 2007 Nov 28;2(11):e1228 [PMID: 18043736]
  139. Nature. 2022 Apr;604(7906):534-540 [PMID: 35418685]
  140. Gene Ther. 2019 Nov;27(10-11):525-534 [PMID: 32704085]
  141. Nature. 2009 Feb 12;457(7231):892-5 [PMID: 19182774]
  142. Development. 2005 Sep;132(18):4179-91 [PMID: 16107475]
  143. Blood. 2000 Apr 1;95(7):2284-8 [PMID: 10733497]
  144. Nature. 2016 May 18;533(7604):487-92 [PMID: 27225119]
  145. Sci Rep. 2016 Feb 19;6:21518 [PMID: 26891705]
  146. Cell Rep. 2017 Nov 21;21(8):2251-2263 [PMID: 29166614]
  147. Nat Cell Biol. 2015 May;17(5):580-91 [PMID: 25915127]
  148. Immunity. 1998 Jan;8(1):105-14 [PMID: 9462516]
  149. Nat Protoc. 2020 Feb;15(2):628-648 [PMID: 31915389]
  150. Cell. 1996 Sep 20;86(6):897-906 [PMID: 8808625]
  151. Stem Cell Reports. 2013 Aug 15;1(3):266-80 [PMID: 24319662]
  152. Am J Stem Cells. 2013 Jun 30;2(2):119-31 [PMID: 23862100]
  153. Blood. 2012 Jul 12;120(2):314-22 [PMID: 22668850]
  154. Blood. 2005 Aug 1;106(3):903-5 [PMID: 15831702]
  155. Development. 2002 Nov;129(21):4891-9 [PMID: 12397098]
  156. Nat Rev Genet. 2007 May;8(5):368-81 [PMID: 17387317]
  157. Exp Hematol. 2018 Dec;68:2-9 [PMID: 30391350]
  158. Exp Hematol. 2019 Mar;71:3-12 [PMID: 30500414]
  159. Sci Transl Med. 2017 Nov 1;9(414): [PMID: 29093179]
  160. Development. 2005 Jul;132(13):2931-42 [PMID: 15944185]
  161. Nat Cell Biol. 2013 May;15(5):502-10 [PMID: 23604320]
  162. J Vis Exp. 2014 Jul 05;(89): [PMID: 25045847]
  163. Blood. 2020 Aug 13;136(7):845-856 [PMID: 32392346]
  164. Dev Dyn. 2015 Mar;244(3):391-409 [PMID: 25641373]
  165. Blood. 2021 Dec 23;138(25):2642-2654 [PMID: 34499717]
  166. Nature. 2006 Sep 21;443(7109):337-9 [PMID: 16988712]
  167. Science. 2010 Sep 10;329(5997):1345-8 [PMID: 20688981]
  168. Sci Adv. 2022 Aug 26;8(34):eabn5522 [PMID: 36001668]
  169. Nature. 2024 Feb;626(8001):1084-1093 [PMID: 38355799]
  170. Development. 2019 Aug 1;146(15): [PMID: 31371526]
  171. Blood Cells Mol Dis. 2013 Dec;51(4):206-12 [PMID: 24095001]
  172. Gene Expr Patterns. 2003 Aug;3(4):467-72 [PMID: 12915314]
  173. J Hematother Stem Cell Res. 2002 Feb;11(1):5-7 [PMID: 11846999]
  174. Stem Cells Dev. 2013 Jan 1;22(1):73-89 [PMID: 22800282]
  175. Cell Stem Cell. 2007 Dec 13;1(6):635-45 [PMID: 18371405]
  176. Nature. 2015 Feb 26;518(7540):547-51 [PMID: 25470051]
  177. Stem Cell Reports. 2018 Jun 5;10(6):1920-1934 [PMID: 29779898]
  178. Development. 2010 Sep 1;137(17):2863-74 [PMID: 20667916]
  179. Nat Genet. 1999 Aug;22(4):361-5 [PMID: 10431240]
  180. EMBO J. 2004 Jan 28;23(2):450-9 [PMID: 14713950]
  181. Nat Rev Immunol. 2023 Sep;23(9):563-579 [PMID: 36922638]
  182. Blood. 2012 Dec 13;120(25):4973-81 [PMID: 23091297]
  183. Cell Rep. 2021 Sep 14;36(11):109675 [PMID: 34525376]
  184. Blood. 2017 Jun 1;129(22):2988-2992 [PMID: 28408465]
  185. Nat Biotechnol. 2011 Nov 27;29(12):1132-44 [PMID: 22119741]
  186. Stem Cell Reports. 2014 Sep 9;3(3):489-501 [PMID: 25241746]
  187. Development. 2004 Apr;131(8):1717-28 [PMID: 15084457]
  188. Front Cell Dev Biol. 2021 Sep 13;9:728057 [PMID: 34589491]
  189. Nature. 2003 Sep 18;425(6955):300-6 [PMID: 13679919]
  190. Nat Commun. 2015 Oct 14;6:8510 [PMID: 26465397]
  191. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  192. Nat Commun. 2019 Aug 8;10(1):3577 [PMID: 31395869]
  193. Nat Methods. 2017 Dec;14(12):1205-1212 [PMID: 29106405]
  194. Genes Dev. 2017 Jul 15;31(14):1406-1416 [PMID: 28860158]
  195. Nature. 2017 May 25;545(7655):432-438 [PMID: 28514439]
  196. Nat Immunol. 2008 Feb;9(2):129-36 [PMID: 18204427]
  197. Dev Biol. 2005 Apr 15;280(2):307-20 [PMID: 15882575]
  198. Cell Stem Cell. 2008 Jul 3;3(1):99-108 [PMID: 18593562]
  199. Nat Commun. 2015 Jul 23;6:7739 [PMID: 26204127]
  200. Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7756-61 [PMID: 18511567]
  201. Circ Res. 1997 Sep;81(3):423-37 [PMID: 9285645]
  202. Cell. 2022 Jul 7;185(14):2523-2541.e30 [PMID: 35738284]
  203. Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a002576 [PMID: 20066080]
  204. Nat Commun. 2013;4:2924 [PMID: 24326267]
  205. Nature. 2006 Aug 3;442(7102):568-71 [PMID: 16760928]
  206. Nature. 2009 Feb 12;457(7231):896-900 [PMID: 19212410]
  207. Immunity. 2003 May;18(5):699-711 [PMID: 12753746]
  208. Nat Commun. 2018 May 8;9(1):1828 [PMID: 29739946]

Grants

  1. R35 GM133482/NIGMS NIH HHS
  2. R01 HL147124/NHLBI NIH HHS
  3. DP5 OD024558/NIH HHS
  4. R01 HL128503/NHLBI NIH HHS
  5. S10 OD026962/NIH HHS
  6. T32 HL120824/NHLBI NIH HHS
  7. R01 HL142637/NHLBI NIH HHS

MeSH Term

Animals
Humans
Mice
Cell Differentiation
Cell Lineage
Endothelial Cells
Hematopoiesis
Hematopoietic Stem Cells
Homeodomain Proteins
Pluripotent Stem Cells
Transcription Factors
Basic-Leucine Zipper Transcription Factors

Chemicals

Homeodomain Proteins
HoxA protein
Transcription Factors
HLF protein, human
Basic-Leucine Zipper Transcription Factors