Image response regression via deep neural networks.

Daiwei Zhang, Lexin Li, Chandra Sripada, Jian Kang
Author Information
  1. Daiwei Zhang: Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
  2. Lexin Li: Department of Biostatistics and Epidemiology, University of California, Berkeley, CA, USA. ORCID
  3. Chandra Sripada: Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
  4. Jian Kang: Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA. ORCID

Abstract

Delineating associations between images and covariates is a central aim of imaging studies. To tackle this problem, we propose a novel non-parametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks. Our method incorporates spatial smoothness, handles subject heterogeneity, and provides straightforward interpretations. It is also highly flexible and accurate, making it ideal for capturing complex association patterns. We establish estimation and selection consistency and derive asymptotic error bounds. We demonstrate the method's advantages through intensive simulations and analyses of two functional magnetic resonance imaging data sets.

Keywords

References

  1. Hum Brain Mapp. 2020 Feb 1;41(2):362-372 [PMID: 31587450]
  2. Trends Cogn Sci. 2011 Oct;15(10):483-506 [PMID: 21908230]
  3. Neuroimage. 2015 May 1;111:312-20 [PMID: 25676914]
  4. IEEE Trans Neural Netw. 2006 Jan;17(1):69-80 [PMID: 16526477]
  5. Neural Netw. 1998 Jan;11(1):15-37 [PMID: 12662846]
  6. Can J Stat. 2021 Mar;49(1):35-38 [PMID: 34158678]
  7. Neuroimage. 2013 Oct 15;80:169-89 [PMID: 23684877]
  8. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14899-902 [PMID: 20679241]
  9. Radiographics. 2017 Nov-Dec;37(7):2113-2131 [PMID: 29131760]
  10. Behav Res Methods. 2010 May;42(2):563-70 [PMID: 20479188]
  11. Trends Cogn Sci. 2013 Dec;17(12):602-3 [PMID: 24129332]
  12. J Am Stat Assoc. 2017;112(519):1169-1181 [PMID: 29200540]
  13. Neural Netw. 2020 Mar;123:343-361 [PMID: 31901565]
  14. Med Image Anal. 2021 Oct;73:102165 [PMID: 34303169]
  15. J Am Stat Assoc. 2016;111(515):1266-1277 [PMID: 28360436]
  16. J Am Stat Assoc. 2014 Jul;109(507):1084-1098 [PMID: 25435598]
  17. Cogn Psychol. 1996 Jun;30(3):257-303 [PMID: 8660786]
  18. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  19. Brain. 2010 Jan;133(Pt 1):234-47 [PMID: 19903732]
  20. Dev Cogn Neurosci. 2018 Aug;32:43-54 [PMID: 29567376]
  21. Nat Neurosci. 2016 Nov;19(11):1523-1536 [PMID: 27643430]
  22. Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104 [PMID: 37127052]
  23. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  24. Annu Rev Biomed Eng. 2017 Jun 21;19:221-248 [PMID: 28301734]
  25. Neuroimage. 2022 May 15;252:119046 [PMID: 35245674]
  26. IEEE Trans Med Imaging. 2020 Nov;39(11):3679-3690 [PMID: 32746113]
  27. Neuroimage. 2019 Nov 15;202:116091 [PMID: 31415884]
  28. Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87 [PMID: 17655784]
  29. Mol Psychiatry. 2020 Dec;25(12):3413-3421 [PMID: 31427753]
  30. Neuron. 2011 Nov 17;72(4):665-78 [PMID: 22099467]
  31. J Mem Lang. 2017 Feb;92:183-201 [PMID: 27990060]
  32. Brain Topogr. 2019 Nov;32(6):926-942 [PMID: 31707621]
  33. Neuroimage. 2009 Jan 1;44(1):62-70 [PMID: 18603449]
  34. J Neurophysiol. 2011 Sep;106(3):1125-65 [PMID: 21653723]
  35. Neural Netw. 2021 Sep;141:404-419 [PMID: 34146968]

Grants

  1. R01 AG062542/NIA NIH HHS
  2. R01 MH105561/NIMH NIH HHS
  3. R01 AG061303/NIA NIH HHS
  4. R01 MH123458/NIMH NIH HHS
  5. R01 GM124061/NIGMS NIH HHS
  6. U01 DA041106/NIDA NIH HHS
  7. R01 DA048993/NIDA NIH HHS

Word Cloud

Created with Highcharts 10.0.0imagingvaryingdeepneuralnetworksregressionnon-parametricspatiallycoefficientmodelsfunctionalmagneticresonanceDelineatingassociationsimagescovariatescentralaimstudiestackleproblemproposenovelapproachframeworkfunctionsestimatedmethodincorporatesspatialsmoothnesshandlessubjectheterogeneityprovidesstraightforwardinterpretationsalsohighlyflexibleaccuratemakingidealcapturingcomplexassociationpatternsestablishestimationselectionconsistencyderiveasymptoticerrorboundsdemonstratemethod'sadvantagesintensivesimulationsanalysestwodatasetsImageresponseviahigh-dimensionalinferencetensor

Similar Articles

Cited By (2)