On the link between temperature and regional COVID-19 severity: Evidence from Italy.

Vicente Rios, Lisa Gianmoena
Author Information
  1. Vicente Rios: Department of Economics University of Milan Via Festa del Perdono, 7 Milano 20122 Italy. ORCID
  2. Lisa Gianmoena: Department of Economics and Management University of Pisa Cosimo Ridolfi 10 Pisa 56124 Italy.

Abstract

This study analyzes the link between temperature and COVID-19 incidence in a sample of Italian regions during the period that covers the first epidemic wave of 2020. To that end, Bayesian model averaging techniques are used to analyze the relevance of temperature together with a set of additional climatic, demographic, social, and health policy factors. The robustness of individual predictors is measured through posterior inclusion probabilities. The empirical analysis provides conclusive evidence on the role played by temperature given that it appears as one of the most relevant determinants reducing regional coronavirus disease 2019 (COVID-19) severity. The strong negative link observed in our baseline analysis is robust to the specification of priors, the scale of analysis, the correction of measurement errors in the data due to under-reporting, the time window considered, and the inclusion of spatial effects in the model. In a second step, we compute relative importance metrics that decompose the variability explained by the model. We find that cross-regional temperature differentials explain a large share of the observed variation on the number of infections.

Keywords

References

  1. Sci Total Environ. 2021 Jan 20;753:142272 [PMID: 33207446]
  2. J Virol. 2014 Jul;88(14):7692-5 [PMID: 24789791]
  3. Eur Respir J. 2020 May 7;55(5): [PMID: 32269084]
  4. J Hosp Infect. 2020 Oct;106(2):226-231 [PMID: 32652214]
  5. Sci Total Environ. 2020 Aug 10;729:139090 [PMID: 32388137]
  6. Epidemiol Infect. 2006 Dec;134(6):1129-40 [PMID: 16959053]
  7. Sci Total Environ. 2020 Oct 15;739:140101 [PMID: 32531684]
  8. JAMA. 2020 Apr 14;323(14):1341-1342 [PMID: 32125371]
  9. Sci Total Environ. 2020 Nov 1;741:140489 [PMID: 32599395]
  10. J Fluid Mech. 2020 Sep 28;903:F1 [PMID: 34191877]
  11. Sci Total Environ. 2020 Jul 1;724:138201 [PMID: 32408450]
  12. Sci Total Environ. 2020 Nov 1;741:140244 [PMID: 32592975]
  13. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27456-27464 [PMID: 33051302]
  14. Sci Total Environ. 2020 Aug 1;728:138835 [PMID: 32334162]
  15. Sci Total Environ. 2021 Feb 1;754:142396 [PMID: 33254938]
  16. Sci Total Environ. 2020 Aug 1;728:138811 [PMID: 32361118]
  17. Sci Total Environ. 2020 Jul 1;724:138226 [PMID: 32408453]
  18. Environ Health. 2003 Nov 20;2(1):15 [PMID: 14629774]
  19. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14857-14863 [PMID: 32527856]
  20. Lancet Infect Dis. 2020 Jun;20(6):669-677 [PMID: 32240634]
  21. Sci Total Environ. 2020 Nov 25;745:141021 [PMID: 32702548]
  22. Sci Adv. 2020 Nov 4;6(45): [PMID: 33148655]
  23. Environ Plan A. 1984 Jan;16(1):17-31 [PMID: 12265900]
  24. Environ Int. 2020 Jun;139:105730 [PMID: 32294574]
  25. Sci Total Environ. 2020 Nov 20;744:140935 [PMID: 32688005]
  26. Adv Virol. 2011;2011:734690 [PMID: 22312351]
  27. PLoS One. 2014 Jan 09;9(1):e83002 [PMID: 24416152]
  28. PLoS One. 2009 Aug 31;4(8):e6852 [PMID: 19718434]
  29. Geogr Anal. 2021 Jul;53(3):397-421 [PMID: 32836331]
  30. Sci Total Environ. 2020 Nov 25;745:141022 [PMID: 32711074]
  31. Sci Total Environ. 2020 Aug 10;729:138705 [PMID: 32361432]
  32. Sci Total Environ. 2020 Jul 20;727:138704 [PMID: 32315904]
  33. Reg Sci Policy Prac. 2020 Dec;12(6):1047-1062 [PMID: 38607811]
  34. Health Econ. 2022 Jan;31(1):154-173 [PMID: 34689385]
  35. Indoor Air. 2021 Mar;31(2):314-323 [PMID: 32979298]
  36. Sci Total Environ. 2020 Aug 1;728:138778 [PMID: 32335405]
  37. Respir Med. 2009 Mar;103(3):456-62 [PMID: 18977127]
  38. Sci Total Environ. 2020 Sep 15;735:139560 [PMID: 32464409]
  39. BMC Med. 2020 Oct 22;18(1):332 [PMID: 33087179]
  40. Reg Sci Policy Prac. 2021 Nov;13(Suppl 1):109-137 [PMID: 38607900]
  41. N Engl J Med. 2020 Apr 16;382(16):1564-1567 [PMID: 32182409]
  42. JAMA Netw Open. 2020 Jun 1;3(6):e2011834 [PMID: 32525550]
  43. Sci Total Environ. 2020 Oct 10;738:139825 [PMID: 32512362]
  44. Sci Total Environ. 2018 Jul 1;628-629:766-771 [PMID: 29454216]
  45. Biomed Environ Sci. 2003 Sep;16(3):246-55 [PMID: 14631830]
  46. Sci Rep. 2021 Mar 5;11(1):5304 [PMID: 33674627]
  47. BMJ. 2017 Feb 15;356:i6583 [PMID: 28202713]
  48. Environ Int. 2020 Sep;142:105832 [PMID: 32521345]
  49. Sci Total Environ. 2020 Aug 10;729:138862 [PMID: 32361443]
  50. Sci Total Environ. 2021 Feb 10;755(Pt 1):142523 [PMID: 33022464]

Word Cloud

Created with Highcharts 10.0.0temperaturemodellinkCOVID-19analysisItalianregionsBayesianaveraginginclusionregionalobservedspatialinfectionsstudyanalyzesincidencesampleperiodcoversfirstepidemicwave2020endtechniquesusedanalyzerelevancetogethersetadditionalclimaticdemographicsocialhealthpolicyfactorsrobustnessindividualpredictorsmeasuredposteriorprobabilitiesempiricalprovidesconclusiveevidenceroleplayedgivenappearsonerelevantdeterminantsreducingcoronavirusdisease2019severitystrongnegativebaselinerobustspecificationpriorsscalecorrectionmeasurementerrorsdatadueunder-reportingtimewindowconsideredeffectssecondstepcomputerelativeimportancemetricsdecomposevariabilityexplainedfindcross-regionaldifferentialsexplainlargesharevariationnumberseverity:EvidenceItalyCOVID���19econometricstemperatures

Similar Articles

Cited By (3)