Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding.

Naoki Egami, Eric J Tchetgen Tchetgen
Author Information
  1. Naoki Egami: Department of Political Science, Columbia University, New York, NY, USA. ORCID
  2. Eric J Tchetgen Tchetgen: Department of Statistics and Data Science and Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.

Abstract

Identification and estimation of causal peer effects are challenging in observational studies for two reasons. The first is the identification challenge due to unmeasured network confounding, for example, homophily bias and contextual confounding. The second is network dependence of observations. We establish a framework that leverages a pair of negative control outcome and exposure variables (double negative controls) to non-parametrically identify causal peer effects in the presence of unmeasured network confounding. We then propose a generalised method of moments estimator and establish its consistency and asymptotic normality under an assumption about -network dependence. Finally, we provide a consistent variance estimator.

Keywords

References

  1. BMJ. 2008 Dec 04;337:a2533 [PMID: 19056789]
  2. Sociol Methods Res. 2011 May;40(2):211-239 [PMID: 22523436]
  3. N Engl J Med. 2007 Jul 26;357(4):370-9 [PMID: 17652652]
  4. Biometrics. 2014 Sep;70(3):506-15 [PMID: 24779654]
  5. J Am Stat Assoc. 2021;116(534):833-844 [PMID: 34366505]
  6. J Am Stat Assoc. 2024;119(545):597-611 [PMID: 38800714]
  7. Biometrika. 2018 Dec;105(4):987-993 [PMID: 33343006]
  8. Stat Sci. 2014 Nov;29(4):687-706 [PMID: 25620841]
  9. J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540 [PMID: 33376449]
  10. AMIA Annu Symp Proc. 2022 Feb 21;2021:334-342 [PMID: 35308969]
  11. Epidemiology. 2010 May;21(3):383-8 [PMID: 20335814]
  12. J Causal Inference. 2014 Mar;2(1):13-74 [PMID: 26180755]
  13. Stat Sci. 2016;31(3):348-361 [PMID: 28239233]

Grants

  1. R01 AG065276/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0causalpeernetworkconfoundingnegativeeffectsunmeasuredIdentificationestimationdependenceestablishcontroldoublecontrolsestimatorinferencechallengingobservationalstudiestworeasonsfirstidentificationchallengedueexamplehomophilybiascontextualsecondobservationsframeworkleveragespairoutcomeexposurevariablesnon-parametricallyidentifypresenceproposegeneralisedmethodmomentsconsistencyasymptoticnormalityassumption-networkFinallyprovideconsistentvarianceusingnetworksinterferenceeffectproximallearning

Similar Articles

Cited By