Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways.

Krishna Kumar Varshney, Jeetendra Kumar Gupta, Rajnish Srivastava
Author Information
  1. Krishna Kumar Varshney: Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
  2. Jeetendra Kumar Gupta: Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
  3. Rajnish Srivastava: Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India. ORCID

Abstract

BACKGROUND: Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities.
OBJECTIVE: This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases.
METHODS: A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023.
RESULTS: The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis.
CONCLUSION: The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.

Keywords

References

  1. Ganeshpurkar A.; Saluja A.K.; The pharmacological potential of rutin. Saudi Pharm J 2017,25(2),149-164 [DOI: 10.1016/j.jsps.2016.04.025]
  2. Makhuvele R.; Naidu K.; Gbashi S.; Thipe V.C.; Adebo O.A.; Njobeh P.B.; The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 2020,6(10),e05291 [DOI: 10.1016/j.heliyon.2020.e05291]
  3. Demir Y.; Ceylan H.; T��rke�� C.; Beydemir ��.; Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J Biomol Struct Dyn 2022,40(22),12008-12021 [DOI: 10.1080/07391102.2021.1967195]
  4. Bayrak S.; ��zt��rk C.; Demir Y.; Al��m Z.; K��frevioglu ��.��.; Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept Lett 2020,27(3),187-192 [DOI: 10.2174/0929866526666191002142301]
  5. Williams C.A.; Grayer R.J.; Anthocyanins and other flavonoids. Nat Prod Rep 2004,21(4),539-573 [DOI: 10.1039/b311404j]
  6. ��zaslan M.S.; Sa��lamta�� R.; Demir Y.; Gen�� Y.; Sara��o��lu ��.; G��l��in ��.; Isolation of some phenolic compounds from plantago subulata l. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem Biodivers 2022,19(8),e202200280 [DOI: 10.1002/cbdv.202200280]
  7. Palab��y��k E.; Sulumer A.N.; Uguz H.; Avc�� B.; Ask��n S.; Ask��n H.; Demir Y.; Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit 2023,36(3),e3004 [DOI: 10.1002/jmr.3004]
  8. T��rke�� C.; Demir Y.; Beydemir ��.; In Vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors**. ChemistrySelect 2022,7(48),e202204050 [DOI: 10.1002/slct.202204050]
  9. Ahmad T.; Javed A.; Khan T.; Althobaiti Y.S.; Ullah A.; Almutairi F.M.; Shah A.J.; Investigation into the antihypertensive effects of diosmetin and its underlying vascular mechanisms using rat model. Pharmaceuticals 2022,15(8),951 [DOI: 10.3390/ph15080951]
  10. Song C.; Deng S.; Hu H.; Zheng Z.; Shen B.; Wu X.; Huang M.; Wang J.; Wang Z.; Diosmetin affects gene expression on human lung adenocarcinoma cells. J Oncol 2022,2022,1-9 [DOI: 10.1155/2022/5482148]
  11. Yoshikawa M.; Uemura T.; Shimoda H.; Kishi A.; Kawahara Y.; Matsuda H.; Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial part of Petroselinum crispum MIll. (Parsley) and structures of 6"-acetylapiin and a new monoterpene glycoside, petroside. Chem Pharm Bull 2000,48(7),1039-1044 [DOI: 10.1248/cpb.48.1039]
  12. Catani M.V.; Rinaldi F.; Tullio V.; Gasperi V.; Savini I.; Comparative analysis of phenolic composition of six commercially available chamomile (Matricaria chamomilla L.) extracts: Potential biological implications. Int J Mol Sci 2021,22(19),10601 [DOI: 10.3390/ijms221910601]
  13. Hostetler G.L.; Riedl K.M.; Schwartz S.J.; Endogenous enzymes, heat, and pH affect flavone profiles in parsley (Petroselinum crispum var. neapolitanum) and celery (Apium graveolens) during juice processing. J Agric Food Chem 2012,60(1),202-208 [DOI: 10.1021/jf2033736]
  14. Hostetler G.L.; Ralston R.A.; Schwartz S.J.; Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 2017,8(3),423-435 [DOI: 10.3945/an.116.012948]
  15. Gattuso G.; Barreca D.; Gargiulli C.; Leuzzi U.; Caristi C.; Flavonoid composition of Citrus juices. Molecules 2007,12(8),1641-1673 [DOI: 10.3390/12081641]
  16. Villalva M.; Silvan J.M.; Alarc��n-Cavero T.; Villanueva-Bermejo D.; Jaime L.; Santoyo S.; Martinez-Rodriguez A.J.; Antioxidant, anti-inflammatory, and antibacterial properties of an Achillea millefolium L. Extract and its fractions obtained by supercritical anti-solvent fractionation against Helicobacter pylori. Antioxidants 2022,11(10),1849 [DOI: 10.3390/antiox11101849]
  17. Lee DH; Park JK; Choi J; Jang H; Seol JW; Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model. Int Immunopharmacol 2020,89,107046 [DOI: 10.1016/j.intimp.2020.107046]
  18. Barton NW; Lipovac V; Rosenberg A; Effects of strong electrolyte upon the activity of Clostridium perfringens sialidase toward sialyllactose and sialoglycolipids. J Biol Chem 1975,250(21),8462-8466
  19. Shi M.; Wang J.; Bi F.; Bai Z.; Diosmetin alleviates cerebral ischemia-reperfusion injury through Keap1-mediated Nrf2/ARE signaling pathway activation and NLRP3 inflammasome inhibition. Environ Toxicol 2022,37(6),1529-1542 [DOI: 10.1002/tox.23504]
  20. Mo G.; He Y.; Zhang X.; Lei X.; Luo Q.; Diosmetin exerts cardioprotective effect on myocardial ischaemia injury in neonatal rats by decreasing oxidative stress and myocardial apoptosis. Clin Exp Pharmacol Physiol 2020,47(10),1713-1722 [DOI: 10.1111/1440-1681.13309]
  21. Yang K.; Li W.F.; Yu J.F.; Yi C.; Huang W.F.; Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J Surg Res 2017,214,69-78 [DOI: 10.1016/j.jss.2017.02.067]
  22. Wang C.; Liao Y.; Wang S.; Wang D.; Wu N.; Xu Q.; Jiang W.; Qiu M.; Liu C.; Cytoprotective effects of diosmetin against hydrogen peroxide-induced L02 cell oxidative damage via activation of the Nrf2-ARE signaling pathway. Mol Med Rep 2018,17(5),7331-7338 [DOI: 10.3892/mmr.2018.8750]
  23. Bednarska K.; Fecka I.; Potential of vasoprotectives to inhibit non-enzymatic protein glycation, and reactive carbonyl and oxygen species uptake. Int J Mol Sci 2021,22(18),10026 [DOI: 10.3390/ijms221810026]
  24. Zhang Y.; Jiang Y.; Lu D.; Diosmetin suppresses neuronal apoptosis and inflammation by modulating the phosphoinositide 3-kinase (PI3K)/AKT/Nuclear Factor-��B (NF-��B) signaling pathway in a rat model of pneumococcal meningitis. Med Sci Monit 2019,25,2238-2245 [DOI: 10.12659/MSM.911860]
  25. Chen Y.; Peng F.; Xing Z.; Chen J.; Peng C.; Li D.; Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022,13,1006434 [DOI: 10.3389/fimmu.2022.1006434]
  26. Uddin M.S.; Mamun A.A.; Rahman M.M.; Jeandet P.; Alexiou A.; Behl T.; Sarwar M.S.; Sobarzo-S��nchez E.; Ashraf G.M.; Sayed A.A.; Albadrani G.M.; Peluso I.; Abdel-Daim M.M.; Natural products for neurodegeneration: Regulating neurotrophic signals. Oxid Med Cell Longev 2021,2021,1-17 [DOI: 10.1155/2021/8820406]
  27. Lai M.C.; Liu W.Y.; Liou S.S.; Liu I.M.; Diosmetin targeted at peroxisome proliferator-activated receptor gamma alleviates advanced glycation end products induced neuronal injury. Nutrients 2022,14(11),2248 [DOI: 10.3390/nu14112248]
  28. Saeedi M.; Rashidy-Pour A.; Association between chronic stress and Alzheimer���s disease: Therapeutic effects of Saffron. Biomed Pharmacother 2021,133,110995 [DOI: 10.1016/j.biopha.2020.110995]
  29. Saghaei E.; Nasiri Boroujeni S.; Safavi P.; Borjian Boroujeni Z.; Bijad E.; Diosmetin mitigates cognitive and memory impairment provoked by chronic unpredictable mild stress in mice. Evid Based Complement Alternat Med 2020,1-10 [DOI: 10.1155/2020/5725361]
  30. Zhang L.; Li D.; Cao F.; Xiao W.; Zhao L.; Ding G.; Wang Z.; Identification of human acetylcholinesterase inhibitors from the constituents of egb761 by modeling docking and molecular dynamics simulations. Comb Chem High Throughput Screen 2018,21(1),41-49 [DOI: 10.2174/1386207320666171123201910]
  31. Lucas K.; Rosch M.; Langguth P.; Molecular hydrogen (H ) as a potential treatment for acute and chronic fatigue. Arch Pharm 2021,354(4),2000378 [DOI: 10.1002/ardp.202000378]
  32. Kaya Y.; Er��a�� A.; Zorlu Y.; Demir Y.; G��l��in ��.; New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 2022,27(2),271-281 [DOI: 10.1007/s00775-022-01932-9]
  33. Assadieskandar A.; Yu C.; Maisonneuve P.; Kurinov I.; Sicheri F.; Zhang C.; Rigidification dramatically improves inhibitor selectivity for RAF kinases. ACS Med Chem Lett 2019,10(7),1074-1080 [DOI: 10.1021/acsmedchemlett.9b00194]
  34. Oztaskin N.; Goksu S.; Demir Y.; Maras A.; Gulcin ��.; Synthesis of novel bromophenol with diaryl methanes���determination of their inhibition effects on carbonic anhydrase and acetylcholinesterase. Molecules 2022,27(21),7426 [DOI: 10.3390/molecules27217426]
  35. Hong S.W.; Teesdale-Spittle P.; Page R.; Truman P.; A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 2022,93,163-172 [DOI: 10.1016/j.neuro.2022.09.008]
  36. Sher E.; Codignola A.; Biancardi E.; Cova D.; Clementi F.; Amine uptake inhibition by diosmin and diosmetin in human neuronal and neuroendocrine cell lines. Pharmacol Res 1992,26(4),395-402 [DOI: 10.1016/1043-6618(92)90238-7]
  37. Rebas E.; Rzajew J.; Radzik T.; Zylinska L.; Neuroprotective polyphenols: A modulatory action on neurotransmitter pathways. Curr Neuropharmacol 2020,18(5),431-445 [DOI: 10.2174/1570159X18666200106155127]
  38. Mei Z.; Du L.; Liu X.; Chen X.; Tian H.; Deng Y.; Zhang W.; Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct 2022,13(1),198-212 [DOI: 10.1039/D1FO02579A]
  39. DeFronzo R.A.; Ferrannini E.; Groop L.; Henry R.R.; Herman W.H.; Holst J.J.; Hu F.B.; Kahn C.R.; Raz I.; Shulman G.I.; Simonson D.C.; Testa M.A.; Weiss R.; Type 2 diabetes mellitus. Nat Rev Dis Primers 2015,1(1),15019 [DOI: 10.1038/nrdp.2015.19]
  40. Akda�� M.; ��z��elik A.B.; Demir Y.; Beydemir ��.; Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J Mol Struct 2022,1258,132675 [DOI: 10.1016/j.molstruc.2022.132675]
  41. Sever B.; Alt��ntop M.D.; Demir Y.; Y��lmaz N.; Akal��n ��ift��i G.; Beydemir ��.; ��zdemir A.; Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem Biol Interact 2021,345,109576 [DOI: 10.1016/j.cbi.2021.109576]
  42. Gong X.; Xiong L.; Bi C.; Zhang B.; Diosmetin ameliorate type 2 diabetic mellitus by up-regulating Corynebacterium glutamicum to regulate IRS/PI3K/AKT-mediated glucose metabolism disorder in KK-Ay mice. Phytomedicine 2021,87,153582 [DOI: 10.1016/j.phymed.2021.153582]
  43. Huang X.; Liu G.; Guo J.; Su Z.; The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018,14(11),1483-1496 [DOI: 10.7150/ijbs.27173]
  44. Ononamadu C.; Ihegboro G.O.; Owolarafe T.A.; Salawu K.; Fadilu M.; Ezeigwe O.C.; Oshobu M.L.; Nwachukwu F.C.; Identification of potential antioxidant and hypoglycemic compounds in aqueous-methanol fraction of methanolic extract of ocimum canum leaves. Anal Bioanal Chem Res 2019,6(2),431-439 [DOI: 10.22036/abcr.2019.161326.1291]
  45. Michael H.N.; Salib J.Y.; Eskander E.F.; Bioactivity of diosmetin glycosides isolated from the epicarp of date fruits, Phoenix dactylifera, on the biochemical profile of alloxan diabetic male rats. Phytother Res 2013,27(5),699-704 [DOI: 10.1002/ptr.4777]
  46. St��l P.; Liver fibrosis in non-alcoholic fatty liver disease: Diagnostic challenge with prognostic significance. World J Gastroenterol 2015,21(39),11077-11087 [DOI: 10.3748/wjg.v21.i39.11077]
  47. Zhang G.; Yan Y.; Feng X.; Effect of diosmetin on young rats with high-fat diet-induced non-alcoholic fatty liver disease. Trop J Pharm Res 2022,20(2),315-320 [DOI: 10.4314/tjpr.v20i2.14]
  48. Luo N.; Yang C.; Zhu Y.; Chen Q.; Zhang B.; Diosmetin ameliorates nonalcoholic steatohepatitis through modulating lipogenesis and inflammatory response in a STAT1/ CXCL10-dependent manner. J Agric Food Chem 2021,69(2),655-667 [DOI: 10.1021/acs.jafc.0c06652]
  49. Meephat S.; Prasatthong P.; Rattanakanokchai S.; Bunbupha S.; Maneesai P.; Pakdeechote P.; Diosmetin attenuates metabolic syndrome and left ventricular alterations via the suppression of angiotensin II/AT 1 receptor/gp /p-NF-��B protein expression in high-fat diet fed rats. Food Funct 2021,12(4),1469-1481 [DOI: 10.1039/D0FO02744H]
  50. Sadeghi H.M.; Adeli I.; Calina D.; Docea A.O.; Mousavi T.; Daniali M.; Nikfar S.; Tsatsakis A.; Abdollahi M.; Polycystic Ovary syndrome: A comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci 2022,23(2),583 [DOI: 10.3390/ijms23020583]
  51. Yan Y.; Liu X.; Gao J.; Wu Y.; Li Y.; Inhibition of TGF-�� signaling in gliomas by the flavonoid diosmetin isolated from Dracocephalum peregrinum L. Molecules 2020,25(1),192 [DOI: 10.3390/molecules25010192]
  52. Ahmad T.; Khan T.; Kirabo A.; Shah A.J.; Antioxidant flavonoid diosmetin is cardioprotective in a rat model of myocardial infarction induced by beta 1-adrenergic receptors activation. Curr Issues Mol Biol 2023,45(6),4675-4686 [DOI: 10.3390/cimb45060297]
  53. Zaragoz�� C.; ��lvarez-Mon M.��.; Zaragoz�� F.; Villaescusa L.; Flavonoids: Antiplatelet effect as inhibitors of COX-1. Molecules 2022,27(3),1146 [DOI: 10.3390/molecules27031146]
  54. Zaragoz�� C.; Monserrat J.; Mantec��n C.; Villaescusa L.; ��lvarez-Mon M.��.; Zaragoz�� F.; ��lvarez-Mon M.; Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed Pharmacother 2021,141,111867 [DOI: 10.1016/j.biopha.2021.111867]
  55. Guo Y.; Li D.; Cen X.; Qiu H.; Ma Y.; Liu Y.; Huang S.; Liu L.; Xu M.; Tang Q.Z.; Diosmetin protects against cardiac hypertrophy via p62/Keap1/Nrf2 signaling pathway. Oxid Med Cell Longev 2022,2022,1-14 [DOI: 10.1155/2022/8367997]
  56. Wang H.; Zhang X.; Liu Y.; Zhang Y.; Wang Y.; Peng Y.; Ding Y.; Diosmetin-7-O-��-D-glucopyranoside suppresses endothelial���mesenchymal transformation through endoplasmic reticulum stress in cardiac fibrosis. Clin Exp Pharmacol Physiol 2023,50(10),789-805 [DOI: 10.1111/1440-1681.13802]
  57. Arab H.H.; Salama S.A.; Omar H.A.; Arafa E.S.A.; Maghrabi I.A.; Diosmin protects against ethanol-induced gastric injury in rats: Novel anti-ulcer actions. PLoS One 2015,10(3),e0122417 [DOI: 10.1371/journal.pone.0122417]
  58. Raffetto J.D.; Pathophysiology of chronic venous disease and venous ulcers. Surg Clin North Am 2018,98(2),337-347 [DOI: 10.1016/j.suc.2017.11.002]
  59. Yu X.; Liu Y.; Diosmetin attenuate experimental ulcerative colitis in rats via suppression of NF-��B, TNF-�� and IL-6 signalling pathways correlated with down-regulation of apoptotic events. Eur J Inflamm 2021,19,. [DOI: 10.1177/20587392211067292]
  60. Rabia A.; Muhammad U.I.; Nazia E.; Tayyaba A.; Ali A.; Houda A.; Nawaf W.A.; Suhail R.; Diosmetin alleviates nonylphenol-induced liver damage by improving biochemical, inflammatory, apoptotic, and histological profile in rats. J King Saud Univ Sci 2023,35(1),102392 [DOI: 10.1016/j.jksus.2022.10239]
  61. W��jciak M.; Feldo M.; Borowski G.; Kubrak T.; P��achno B.J.; Sowa I.; Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Molecules 2022,27(23),8232 [DOI: 10.3390/molecules27238232]
  62. Ge A.; Liu Y.; Zeng X.; Kong H.; Ma Y.; Zhang J.; Bai F.; Huang M.; Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Acta Biochim Biophys Sin 2015,47(8),604-611 [DOI: 10.1093/abbs/gmv052]
  63. Ge A.; Ma Y.; Liu Y.N.; Li Y.S.; Gu H.; Zhang J.X.; Wang Q.X.; Zeng X.N.; Huang M.; Diosmetin prevents TGF-��1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci 2016,153,1-8 [DOI: 10.1016/j.lfs.2016.04.023]
  64. Hao L.; Lu R.; Ma X.; Fan S.; Effect of diosmetin on acute lung injury induced by meconium and its mechanism in neonatal rats. Lab Anim Comp Med 2020,40(5),384 [DOI: 10.3969/j.issn.1674-5817.2020.05.004]
  65. Liu Q.; Ci X.; Wen Z.; Peng L.; Diosmetin alleviates lipopolysaccharide-induced acute lung injury through activating the Nrf2 pathway and inhibiting the NLRP3 inflammasome. Biomol Ther 2018,26(2),157-166 [DOI: 10.4062/biomolther.2016.234]
  66. Zhou B.; Wang L.; Yang S.; Liang Y.; Zhang Y.; Pan X.; Li J.; Diosmetin alleviates benzo[a]pyrene-exacerbated H1N1 influenza virus-induced acute lung injury and dysregulation of inflammation through modulation of the PPAR-��-NF-��B/P38 MAPK signaling axis. Food Funct 2023,14(7),3357-3378 [DOI: 10.1039/D2FO02590F]
  67. Xia J.; Li J.; Deng M.; Yin F.; Liu J.; Wang J.; Diosmetin alleviates acute lung injury caused by lipopolysaccharide by targeting barrier function. Inflammopharmacology 2023,31(4),2037-2047 [DOI: 10.1007/s10787-023-01228-7]
  68. Alqahtani M.J.; Negm W.A.; Saad H.M.; Salem E.A.; Hussein I.A.; Ibrahim H.A.; Fenofibrate and Diosmetin in a rat model of testicular toxicity: New insight on their protective mechanism through PPAR-��/NRF-2/HO-1 signaling pathway. Biomed Pharmacother 2023,165,115095 [DOI: 10.1016/j.biopha.2023.115095]
  69. Chen Y.; Xiang Q.; Peng F.; Gao S.; Yu L.; Tang Y.; Yang Z.; Pu W.; Xie X.; Peng C.; The mechanism of action of safflower total flavonoids in the treatment of endometritis caused by incomplete abortion based on network pharmacology and 16S rDNA sequencing. J Ethnopharmacol 2023,315,116639 [DOI: 10.1016/j.jep.2023.116639]
  70. Adamante G.; de Almeida A.S.; Rigo F.K.; da Silva Silveira E.; Coelho Y.O.; De Pr�� S.D.T.; Milioli A.M.; Camponogara C.; Casoti R.; Bellinaso F.; Desideri A.V.; Santos M.F.C.; Ferreira J.; Oliveira S.M.; Trevisan G.; Diosmetin as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive activity in mice. Life Sci 2019,216,215-226 [DOI: 10.1016/j.lfs.2018.11.029]
  71. Feldo M.; W��jciak M.; Ziemlewska A.; Dresler S.; Sowa I.; Modulatory effect of diosmin and diosmetin on metalloproteinase activity and inflammatory mediators in human skin fibroblasts treated with lipopolysaccharide. Molecules 2022,27(13),4264 [DOI: 10.3390/molecules27134264]
  72. Chen Y.; Wang Y.; Liu M.; Zhou B.; Yang G.; Diosmetin exhibits anti-proliferative and anti-inflammatory effects on TNF-��-stimulated human rheumatoid arthritis fibroblast-like synoviocytes through regulating the Akt and NF-��B signaling pathways. Phytother Res 2020,34(6),1310-1319 [DOI: 10.1002/ptr.6596]
  73. Yarmolinsky L.; Budovsky A.; Ben-Shabat S.; Khalfin B.; Gorelick J.; Bishitz Y.; Miloslavski R.; Yarmolinsky L.; Recent updates on the phytochemistry and pharmacological properties of Phlomis viscosa poiret. Rejuvenation Res 2019,22(4),282-288 [DOI: 10.1089/rej.2018.2093]
  74. Ma A.; Zhang R.; Diosmetin inhibits cell proliferation, induces cell apoptosis and cell cycle arrest in liver cancer. Cancer Manag Res 2020,12,3537-3546 [DOI: 10.2147/CMAR.S240064]
  75. Choi J.; Lee D.H.; Park S.Y.; Seol J.W.; Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed Pharmacother 2019,117,109091 [DOI: 10.1016/j.biopha.2019.109091]
  76. Zhao F.; Hong X.; Li D.; Wei Z.; Ci X.; Zhang S.; Diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway. Med Oncol 2021,38(5),54 [DOI: 10.1007/s12032-021-01501-1]
  77. Meephat S.; Prasatthong P.; Potue P.; Bunbupha S.; Pakdeechote P.; Maneesai P.; Diosmetin ameliorates vascular dysfunction and remodeling by modulation of Nrf2/HO-1 and p-JNK/p-NF-��B expression in hypertensive rats. Antioxidants 2021,10(9),1487 [DOI: 10.3390/antiox10091487]
  78. Ning R.; Chen G.; Fang R.; Zhang Y.; Zhao W.; Qian F.; Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol Res 2021,54(1),40 [DOI: 10.1186/s40659-021-00363-1]
  79. Oak C.; Khalifa A.; Isali I.; Bhaskaran N.; Walker E.; Shukla S.; Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int J Oncol 2018,53(2),835-843 [DOI: 10.3892/ijo.2018.4407]
  80. Liu S.; Zhou X.; Li W.; Zhang H.; Zhang B.; Li G.; Liu B.; Deng X.; Peng L.; Diosmetin inhibits the expression of alpha-hemolysin in Staphylococcus aureus. Antonie van Leeuwenhoek 2015,108(2),383-389 [DOI: 10.1007/s10482-015-0491-6]
  81. Chan B.C.L.; Ip M.; Gong H.; Lui S.L.; See R.H.; Jolivalt C.; Fung K.P.; Leung P.C.; Reiner N.E.; Lau C.B.S.; Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine 2013,20(7),611-614 [DOI: 10.1016/j.phymed.2013.02.007]
  82. Wang S.Y.; Sun Z.L.; Liu T.; Gibbons S.; Zhang W.J.; Qing M.; Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother Res 2014,28(7),1071-1076 [DOI: 10.1002/ptr.5098]
  83. Liu Y.; Benohoud M.; Galani Yamdeu J.H.; Gong Y.Y.; Orfila C.; Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. Food Chem X 2021,12,100144 [DOI: 10.1016/j.fochx.2021.100144]
  84. Yang S.; Wang L.; Pan X.; Liang Y.; Zhang Y.; Li J.; Zhou B.; 5-Methoxyflavone-induced AMPK�� activation inhibits NF-��B and P38 MAPK signaling to attenuate influenza A virus-mediated inflammation and lung injury in vitro and in vivo. Cell Mol Biol Lett 2022,27(1),82 [DOI: 10.1186/s11658-022-00381-1]
  85. Anwer M.K.; Aldawsari M.F.; Iqbal M.; Almutairy B.K.; Soliman G.A.; Aboudzadeh M.A.; Diosmin-loaded nanoemulsion-based gel formulation: Development, optimization, wound healing and anti-inflammatory studies. Gels 2023,9(2),95 [DOI: 10.3390/gels9020095]
  86. Hsu Y.L.; Kuo P.L.; Diosmetin induces human osteoblastic differentiation through the protein kinase C/p38 and extracellular signal-regulated kinase 1/2 pathway. J Bone Miner Res 2008,23(6),949-960 [DOI: 10.1359/jbmr.080219]
  87. Ding H.; Ding H.; Mu P.; Lu X.; Xu Z.; Diosmetin inhibits subchondral bone loss and indirectly protects cartilage in a surgically-induced osteoarthritis mouse model. Chem Biol Interact 2023,370,110311 [DOI: 10.1016/j.cbi.2022.110311]
  88. Shao S.; Fu F.; Wang Z.; Song F.; Li C.; Wu Z.; Ding J.; Li K.; Xiao Y.; Su Y.; Lin X.; Yuan G.; Zhao J.; Liu Q.; Xu J.; Diosmetin inhibits osteoclast formation and differentiation and prevents LPS-induced osteolysis in mice. J Cell Physiol 2019,234(8),12701-12713 [DOI: 10.1002/jcp.27887]
  89. Park N.J.; Jo B.G.; Bong S.K.; Park S.; Lee S.; Kim Y.K.; Yang M.H.; Kim S.N.; Lobelia chinensis extract and its active compound, diosmetin, improve atopic dermatitis by reinforcing skin barrier function through SPINK5/LEKTI regulation. Int J Mol Sci 2022,23(15),8687 [DOI: 10.3390/ijms23158687]
  90. Park S.; Bong S.K.; Lee J.W.; Park N.J.; Choi Y.; Kim S.M.; Yang M.H.; Kim Y.K.; Kim S.N.; Diosmetin and its glycoside, diosmin, improve atopic dermatitis like lesions in 2,4-dinitrochlorobenzene-induced murine models. Biomol Ther 2020,28(6),542-548 [DOI: 10.4062/biomolther.2020.135]
  91. Shen Z.; Shao J.; Dai J.; Lin Y.; Yang X.; Ma J.; He Q.; Yang B.; Yao K.; Luo P.; Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress. Toxicol Rep 2016,3,78-86 [DOI: 10.1016/j.toxrep.2015.12.004]
  92. Guo G.; Dong J.; Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Bioengineered 2022,13(4),11072-11081 [DOI: 10.1080/21655979.2022.2068755]
  93. Sawmiller D.; Habib A.; Li S.; Darlington D.; Hou H.; Tian J.; Shytle R.D.; Smith A.; Giunta B.; Mori T.; Tan J.; Diosmin reduces cerebral A�� levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol 2016,299,98-106 [DOI: 10.1016/j.jneuroim.2016.08.018]
  94. Boisnic S.; Branchet M.C.; Quioc-Salomon B.; Doan J.; Delva C.; Gendron C.; Anti-inflammatory and antioxidant effects of diosmetin-3-O-��-d-glucuronide, the main metabolite of diosmin: Evidence from ex vivo human skin models. Molecules 2023,28(14),5591 [DOI: 10.3390/molecules28145591]
  95. Yang Y.; Gong X.B.; Huang L.G.; Wang Z.X.; Wan R.Z.; Zhang P.; Zhang Q.Y.; Chen Z.; Zhang B.S.; Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget 2017,8(19),30723-30733 [DOI: 10.18632/oncotarget.15413]
  96. Guzik T.J.; Harrison D.G.; Endothelial NF-kappaB as a mediator of kidney damage: The missing link between systemic vascular and renal disease? Circ Res 2007,101(3),227-229 [DOI: 10.1161/CIRCRESAHA.107.158295]
  97. Yu G.; Wan R.; Yin G.; Xiong J.; Hu Y.; Xing M.; Cang X.; Fan Y.; Xiao W.; Qiu L.; Wang X.; Hu G.; Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-��B. Int J Clin Exp Pathol 2014,7(5),2133-2142 [PMID: 24966921]
  98. Russo R.; Chandradhara D.; De Tommasi N.; Comparative bioavailability of two diosmin formulations after oral administration to healthy volunteers. Molecules 2018,23(9),2174 [DOI: 10.3390/molecules23092174]
  99. Mandal P.; Dan S.; Chakraborty S.; Ghosh B.; Saha C.; Khanam J.; Pal T.K.; Simultaneous determination and quantitation of diosmetin and hesperetin in human plasma by liquid chromatographic mass spectrometry with an application to pharmacokinetic studies. J Chromatogr Sci 2019,57(5),451-461 [DOI: 10.1093/chromsci/bmz015]
  100. Chen X.; Xu L.; Guo S.; Wang Z.; Jiang L.; Wang F.; Zhang J.; Liu B.; Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019,1124,58-71 [DOI: 10.1016/j.jchromb.2019.05.030]
  101. Hollman P.C.H.; Bioavailability, and metabolism of flavonoids. A. Pharma Biol 2009,42(1),74-83 [DOI: 10.3109/13880200490893492]
  102. Sil S.; Das A.; Seal I.; Mukherjee S.; Roy S.; A toxicological evaluation for safety assessment of ruthenium-based diosmetin complex in rats. Regul Toxicol Pharmacol 2023,137,105303 [DOI: 10.1016/j.yrtph.2022.105303]

MeSH Term

Humans
Animals
Signal Transduction
Diosmin
Oxidation-Reduction
Databases, Factual
Neuroprotective Agents
Antineoplastic Agents

Chemicals

Diosmin
Neuroprotective Agents
Antineoplastic Agents

Word Cloud

Created with Highcharts 10.0.0diosmetinreviewpotentialsignalingDiosmetinflavonoidactivitiescomprehensivecandiseasesdiosmetin'spathwaysoxidativetherapeuticagentmultifaceteddrugdevelopmentclinicalBACKGROUND:O-methylatedflavoneaglyconepartglycosidesdiosminoccursnaturallycitrusfruitsPharmacologicallyreportedexhibitanticancerantimicrobialantioxidantoestrogenicanti-inflammatoryOBJECTIVE:aimedcriticallyexplorediversepharmacologicalexhibitedAlongalsoidentifyresearchareaselucidationmultifactorialunderlyingmechanismactiondifferentMETHODS:collectionevidenceinsightsobtainedscientificjournalsbooksphysicallibrarieselectronicplatformslikeGoogleScholarPubMedtimeframeselectedyear1992July2023RESULTS:delvesimpactcellularvariousDueabilitymodulatereducestresssuggestedversatilemitigatingstressassociatedpathogenesisCONCLUSION:amalgamationunderscorespromisingrolehighlightingapplicationsUnveilingMolecularMechanismImpactMultifacetedCellularSignalingPathwaysAntioxidant

Similar Articles

Cited By