Systematic analysis of proteome turnover in an organoid model of pancreatic cancer by dSILO.

Alison B Ross, Darvesh Gorhe, Jenny Kim Kim, Stefanie Hodapp, Lela DeVine, Karina M Chan, Iok In Christine Chio, Marko Jovanovic, Marina Ayres Pereira
Author Information
  1. Alison B Ross: Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
  2. Darvesh Gorhe: Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
  3. Jenny Kim Kim: Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
  4. Stefanie Hodapp: Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
  5. Lela DeVine: Department of Biology, Barnard College, New York, NY 10027, USA; Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
  6. Karina M Chan: Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
  7. Iok In Christine Chio: Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address: ic2445@cumc.columbia.edu.
  8. Marko Jovanovic: Department of Biological Sciences, Columbia University, New York City, NY 10027, USA. Electronic address: mj2794@columbia.edu.
  9. Marina Ayres Pereira: Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address: marinaayrespereira@gmail.com.

Abstract

The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.

Keywords

References

  1. Nat Rev Gastroenterol Hepatol. 2019 Apr;16(4):207-220 [PMID: 30718832]
  2. Mol Cell. 2020 Feb 20;77(4):913-925.e4 [PMID: 31812349]
  3. Pancreas. 2010 Oct;39(7):1093-103 [PMID: 20531246]
  4. Blood. 2007 Nov 1;110(9):3281-90 [PMID: 17591945]
  5. Mol Cell Proteomics. 2016 Dec;15(12):3551-3563 [PMID: 27765818]
  6. Cell. 2017 Sep 7;170(6):1247-1257.e12 [PMID: 28844695]
  7. Cancers (Basel). 2019 Jun 19;11(6): [PMID: 31248212]
  8. Cancer Res. 1994 Jun 1;54(11):3025-33 [PMID: 8187092]
  9. Genes Dev. 2016 Feb 15;30(4):355-85 [PMID: 26883357]
  10. J Proteome Res. 2019 Aug 2;18(8):3142-3155 [PMID: 31293153]
  11. Methods. 2022 Jul;203:17-27 [PMID: 35331912]
  12. Anal Chem. 2012 Nov 6;84(21):9214-21 [PMID: 23098179]
  13. Oncotarget. 2016 Nov 8;7(45):74043-74058 [PMID: 27677075]
  14. Cell Syst. 2017 Sep 27;5(3):283-294.e5 [PMID: 28918244]
  15. World J Oncol. 2019 Feb;10(1):10-27 [PMID: 30834048]
  16. Nat Genet. 1994 Sep;8(1):27-32 [PMID: 7726912]
  17. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  18. Nat Commun. 2022 Jan 10;13(1):165 [PMID: 35013197]
  19. Cell Rep. 2017 Mar 28;18(13):3143-3154 [PMID: 28355566]
  20. Cell Death Dis. 2018 Feb 7;9(2):161 [PMID: 29415987]
  21. Cancer Biol Ther. 2009 Jul;8(14):1378-85 [PMID: 19556849]
  22. Science. 2004 Feb 6;303(5659):844-8 [PMID: 14704432]
  23. Mol Cell. 2022 Jan 20;82(2):435-446.e7 [PMID: 34847359]
  24. Nucleic Acids Res. 2021 Jan 8;49(D1):D1541-D1547 [PMID: 33174596]
  25. Cancer Cell. 2005 May;7(5):469-83 [PMID: 15894267]
  26. Cancers (Basel). 2020 Apr 07;12(4): [PMID: 32272746]
  27. Sci Adv. 2022 May 20;8(20):eabn4437 [PMID: 35594347]
  28. Nat Genet. 2017 Mar;49(3):358-366 [PMID: 28092682]
  29. Nature. 2016 Mar 3;531(7592):47-52 [PMID: 26909576]
  30. Annu Rev Biochem. 2015;84:435-64 [PMID: 25784053]
  31. Am J Pathol. 2001 May;158(5):1677-83 [PMID: 11337365]
  32. J Biol Chem. 2020 Feb 28;295(9):2544-2554 [PMID: 31974161]
  33. Curr Cancer Drug Targets. 2011 Mar;11(3):239-53 [PMID: 21247388]
  34. Science. 2015 Mar 6;347(6226):1259038 [PMID: 25745177]
  35. Clin Cancer Res. 2004 Mar 1;10(5):1597-604 [PMID: 15014009]
  36. Proteomics. 2009 Jan;9(1):205-9 [PMID: 19053139]
  37. Mol Cell Proteomics. 2018 May;17(5):974-992 [PMID: 29414762]
  38. Dev Cell. 2021 Nov 8;56(21):2952-2965.e9 [PMID: 34715012]
  39. Cell. 2015 Jan 15;160(1-2):324-38 [PMID: 25557080]
  40. Nat Commun. 2019 Nov 13;10(1):5151 [PMID: 31723131]
  41. Mol Cell. 2022 Aug 18;82(16):3045-3060.e11 [PMID: 35752173]
  42. Nat Genet. 2015 Oct;47(10):1168-78 [PMID: 26343385]
  43. Cell. 2016 Aug 11;166(4):963-976 [PMID: 27477511]
  44. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14508-13 [PMID: 20699386]
  45. Science. 1996 Jan 19;271(5247):350-3 [PMID: 8553070]
  46. FASEB J. 2015 Aug;29(8):3582-92 [PMID: 25977255]
  47. Cell Rep. 2020 Jan 28;30(4):1077-1087.e3 [PMID: 31995731]
  48. Nat Protoc. 2007;2(8):1896-906 [PMID: 17703201]
  49. Nat Commun. 2021 Nov 26;12(1):6778 [PMID: 34836951]
  50. Genes Dis. 2020 Dec 18;8(6):769-780 [PMID: 34522707]
  51. Genes (Basel). 2019 Dec 19;11(1): [PMID: 31861620]
  52. Mol Cell Proteomics. 2021;20:100016 [PMID: 33556866]
  53. Nucleic Acids Res. 2023 Jan 6;51(D1):D539-D545 [PMID: 36382402]
  54. Nature. 2008 Sep 4;455(7209):58-63 [PMID: 18668040]
  55. Cancer Biol Ther. 2012 Aug;13(10):946-55 [PMID: 22785201]
  56. Clin Cancer Res. 2021 Jul 15;27(14):4127 [PMID: 34261772]
  57. Nat Commun. 2018 Feb 15;9(1):689 [PMID: 29449567]
  58. Nat Med. 2011 Apr;17(4):500-3 [PMID: 21460848]
  59. Am J Pathol. 1993 May;142(5):1534-43 [PMID: 8494051]
  60. CA Cancer J Clin. 2023 Jan;73(1):17-48 [PMID: 36633525]
  61. Nature. 2012 Nov 15;491(7424):399-405 [PMID: 23103869]
  62. Front Cell Dev Biol. 2023 Feb 16;11:1143532 [PMID: 36875752]
  63. Nat Med. 2018 Feb;24(2):186-193 [PMID: 29334375]
  64. Nat Protoc. 2018 Jul;13(7):1632-1661 [PMID: 29988108]
  65. Mol Cell Proteomics. 2012 Dec;11(12):1551-65 [PMID: 23125033]
  66. N Engl J Med. 2010 Apr 29;362(17):1605-17 [PMID: 20427809]
  67. Nat Commun. 2018 Oct 12;9(1):4230 [PMID: 30315172]
  68. PLoS One. 2013 May 21;8(5):e63402 [PMID: 23704904]
  69. Cold Spring Harb Perspect Med. 2018 Sep 4;8(9): [PMID: 29229669]
  70. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  71. Nature. 2023 Feb;614(7947):349-357 [PMID: 36725930]
  72. Cell Syst. 2019 Dec 18;9(6):569-579.e7 [PMID: 31521604]
  73. Nature. 2016 Sep 14;537(7620):347-55 [PMID: 27629641]
  74. Nature. 2016 Sep 29;537(7622):644-648 [PMID: 27654913]
  75. Mol Cell Proteomics. 2012 Mar;11(3):M111.011429 [PMID: 21937730]
  76. Gut. 2019 Jun;68(6):1034-1043 [PMID: 30658994]
  77. Nat Cell Biol. 2014 Oct;16(10):992-1003, 1-15 [PMID: 25241037]
  78. Science. 2008 Sep 26;321(5897):1801-6 [PMID: 18772397]
  79. AAPS J. 2018 Aug 27;20(6):94 [PMID: 30151644]
  80. Biochem J. 2016 Mar 15;473(6):703-15 [PMID: 26699902]

Grants

  1. R01 CA267870/NCI NIH HHS
  2. R01 CA273023/NCI NIH HHS

MeSH Term

Organoids
Proteome
Pancreatic Neoplasms
Humans
Carcinoma, Pancreatic Ductal
Isotope Labeling
Proteomics

Word Cloud

Created with Highcharts 10.0.0turnoverPDAproteinorganoidsdSILOmetastaticproteomepancreaticmetastasisdynamiclabelingSILACmodelcomparedtumorproteinsanalysisCP:roleductaladenocarcinomapreviouslyinvestigatedintroducestable-isotope:derivativecombinespulseisotopicallylabeledaminoacidsisobarictandemmass-tagTMTmeasureproteome-wideratesapplieddiscoveredexhibitacceleratedglobalprimaryGloballychangesreflectedlevelabundanceInterestinglygroupshowhighestincreaseinvolvedmitochondrialrespirationindicatesmayadoptalternativerespiratorychainfunctionalitycontrolledrateturnedCollectivelyoffersinsightsmechanismsunderlyingSystematicorganoidcancerBiotechnologyCancerbiologymetastaseshalf-liferespirasome

Similar Articles

Cited By

No available data.