[Identifying spatial domains from spatial transcriptome by graph attention network].

Hanwen Wu, Jie Gao
Author Information
  1. Hanwen Wu: Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
  2. Jie Gao: Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.

Abstract

Due to the high dimensionality and complexity of the data, the analysis of spatial transcriptome data has been a challenging problem. Meanwhile, cluster analysis is the core issue of the analysis of spatial transcriptome data. In this article, a deep learning approach is proposed based on graph attention networks for clustering analysis of spatial transcriptome data. Our method first enhances the spatial transcriptome data, then uses graph attention networks to extract features from nodes, and finally uses the Leiden algorithm for clustering analysis. Compared with the traditional non-spatial and spatial clustering methods, our method has better performance in data analysis through the clustering evaluation index. The experimental results show that the proposed method can effectively cluster spatial transcriptome data and identify different spatial domains, which provides a new tool for studying spatial transcriptome data.

Keywords

References

  1. Genome Biol. 2020 Dec 10;21(1):300 [PMID: 33303016]
  2. Genome Med. 2024 Jan 12;16(1):12 [PMID: 38217035]
  3. Nat Biotechnol. 2021 Nov;39(11):1375-1384 [PMID: 34083791]
  4. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  5. Nat Methods. 2021 Nov;18(11):1342-1351 [PMID: 34711970]
  6. Bioinformatics. 2022 Jan 27;38(4):997-1004 [PMID: 34623423]
  7. Science. 2022 Sep 30;377(6614):eabo7257 [PMID: 36007006]
  8. Nat Neurosci. 2021 Mar;24(3):425-436 [PMID: 33558695]
  9. BMC Bioinformatics. 2021 Aug 9;22(1):397 [PMID: 34372758]
  10. Nat Commun. 2022 Apr 1;13(1):1739 [PMID: 35365632]
  11. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  12. Nucleic Acids Res. 2022 Dec 9;50(22):e131 [PMID: 36250636]
  13. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]

MeSH Term

Algorithms
Cluster Analysis
Transcriptome
Deep Learning
Gene Expression Profiling
Humans

Word Cloud

Created with Highcharts 10.0.0spatialdataanalysistranscriptomeattentionclusteringgraphmethodclusterlearningproposednetworksusesdomainsDuehighdimensionalitycomplexitychallengingproblemMeanwhilecoreissuearticledeepapproachbasedfirstenhancesextractfeaturesnodesfinallyLeidenalgorithmComparedtraditionalnon-spatialmethodsbetterperformanceevaluationindexexperimentalresultsshowcaneffectivelyidentifydifferentprovidesnewtoolstudying[Identifyingnetwork]ClusteringDeepGraphnetworkSpatialtranscriptomics

Similar Articles

Cited By

No available data.