Adaptive bootstrap tests for composite null hypotheses in the mediation pathway analysis.

Yinqiu He, Peter X K Song, Gongjun Xu
Author Information
  1. Yinqiu He: Department of Statistics, University of Wisconsin, Madison, WI, USA.
  2. Peter X K Song: Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
  3. Gongjun Xu: Department of Statistics, University of Michigan, Ann Arbor, MI, USA.

Abstract

Mediation analysis aims to assess if, and how, a certain exposure influences an outcome of interest through intermediate variables. This problem has recently gained a surge of attention due to the tremendous need for such analyses in scientific fields. Testing for the mediation effect (ME) is greatly challenged by the fact that the underlying null hypothesis (i.e. the absence of MEs) is composite. Most existing mediation tests are overly conservative and thus underpowered. To overcome this significant methodological hurdle, we develop an adaptive bootstrap testing framework that can accommodate different types of composite null hypotheses in the mediation pathway analysis. Applied to the product of coefficients test and the joint significance test, our adaptive testing procedures provide type I error control under the composite null, resulting in much improved statistical power compared to existing tests. Both theoretical properties and numerical examples of the proposed methodology are discussed.

Keywords

References

  1. Epidemiol Methods. 2014 Jan;2(1):95-115 [PMID: 25580377]
  2. Stat Med. 2020 Aug 15;39(18):2423-2436 [PMID: 32363646]
  3. Epidemiology. 2019 Nov;30(6):825-834 [PMID: 31478915]
  4. Psychol Methods. 2002 Mar;7(1):83-104 [PMID: 11928892]
  5. Biometrics. 2016 Jun;72(2):563-74 [PMID: 26618735]
  6. Multivariate Behav Res. 2004 Jan 1;39(1):99 [PMID: 20157642]
  7. Biometrics. 2014 Dec;70(4):881-90 [PMID: 24975802]
  8. Biometrics. 2015 Mar;71(1):1-14 [PMID: 25351114]
  9. Biometrics. 2019 Mar;75(1):163-171 [PMID: 30039847]
  10. Genet Epidemiol. 2017 Dec;41(8):824-833 [PMID: 29082545]
  11. Stat Med. 2019 Aug 15;38(18):3346-3360 [PMID: 31074092]
  12. Psychol Sci. 2007 Mar;18(3):233-9 [PMID: 17444920]
  13. Psychol Methods. 2013 Jun;18(2):137-50 [PMID: 23379553]
  14. Psychol Methods. 2010 Dec;15(4):309-34 [PMID: 20954780]
  15. J Am Stat Assoc. 2022;117(540):2014-2027 [PMID: 36945327]
  16. Environ Health Perspect. 2020 May;128(5):55001 [PMID: 32379489]
  17. J R Stat Soc Series B Stat Methodol. 2018 Mar;80(2):433-452 [PMID: 29576736]
  18. Biom J. 2022 Aug;64(6):1090-1108 [PMID: 35426161]
  19. J Am Stat Assoc. 2022;117(537):67-81 [PMID: 35989709]
  20. Psychol Methods. 2022 Dec;27(6):982-999 [PMID: 34323583]
  21. J Am Stat Assoc. 2022;117(537):198-213 [PMID: 35400115]
  22. Curr Dir Psychol Sci. 2009 Feb 1;18(1):16 [PMID: 20157637]
  23. Am J Epidemiol. 2010 Dec 15;172(12):1339-48 [PMID: 21036955]
  24. Psychometrika. 2021 Jun;86(2):595-618 [PMID: 34008127]
  25. Epidemiology. 2014 Mar;25(2):300-6 [PMID: 24487213]
  26. Biostatistics. 2016 Jan;17(1):122-34 [PMID: 26272993]
  27. J Pers Soc Psychol. 1986 Dec;51(6):1173-82 [PMID: 3806354]
  28. Biometrics. 2016 Jun;72(2):402-13 [PMID: 26414245]
  29. J Am Stat Assoc. 2015;110(512):1422-1433 [PMID: 27073292]
  30. BMJ Open. 2019 Aug 26;9(8):e030427 [PMID: 31455712]
  31. Epidemiology. 2011 Jul;22(4):582-5 [PMID: 21642779]
  32. Biometrika. 2020 Sep;107(3):573-589 [PMID: 32831353]
  33. Epidemiology. 1992 Mar;3(2):143-55 [PMID: 1576220]
  34. Bioinformatics. 2018 Jul 15;34(14):2418-2424 [PMID: 29420693]
  35. J Am Stat Assoc. 2011 Sep 1;106(495):904-913 [PMID: 22053123]
  36. Biometrics. 2019 Dec;75(4):1191-1204 [PMID: 31009061]
  37. Int J Biostat. 2020 Sep 30;17(2):191-221 [PMID: 32990647]

Grants

  1. R01 ES033656/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0mediationcompositeanalysisnulltestsbootstraphypothesisexistingadaptivetestinghypothesespathwaytestMediationaimsassesscertainexposureinfluencesoutcomeinterestintermediatevariablesproblemrecentlygainedsurgeattentionduetremendousneedanalysesscientificfieldsTestingeffectMEgreatlychallengedfactunderlyingieabsenceMEsoverlyconservativethusunderpoweredovercomesignificantmethodologicalhurdledevelopframeworkcanaccommodatedifferenttypesAppliedproductcoefficientsjointsignificanceproceduresprovidetypeerrorcontrolresultingmuchimprovedstatisticalpowercomparedtheoreticalpropertiesnumericalexamplesproposedmethodologydiscussedAdaptivestructuralequationmodel

Similar Articles

Cited By