Exploring heterogeneity and dynamics of meteorological influences on US PM: A distributed learning approach with spatiotemporal varying coefficient models.

Lily Wang, Guannan Wang, Annie S Gao
Author Information
  1. Lily Wang: Department of Statistics, George Mason University, 4400 University Drive, MS 4A7, Fairfax, 22030, VA, USA.
  2. Guannan Wang: Department of Mathematics, William & Mary, 120 Jones Hall, Williamsburg, 23185, VA, USA.
  3. Annie S Gao: McLean High School, 1633 Davidson Rd, McLean, 22101, VA, USA.

Abstract

Particulate matter (PM) has emerged as a primary air quality concern due to its substantial impact on human health. Many recent research works suggest that PM concentrations depend on meteorological conditions. Enhancing current pollution control strategies necessitates a more holistic comprehension of PM dynamics and the precise quantification of spatiotemporal heterogeneity in the relationship between meteorological factors and PM levels. The spatiotemporal varying coefficient model stands as a prominent spatial regression technique adept at addressing this heterogeneity. Amidst the challenges posed by the substantial scale of modern spatiotemporal datasets, we propose a pioneering distributed estimation method (DEM) founded on multivariate spline smoothing across a domain's triangulation. This DEM algorithm ensures an easily implementable, highly scalable, and communication-efficient strategy, demonstrating almost linear speedup potential. We validate the effectiveness of our proposed DEM through extensive simulation studies, demonstrating that it achieves coefficient estimations akin to those of global estimators derived from complete datasets. Applying the proposed model and method to the US daily PM and meteorological data, we investigate the influence of meteorological variables on PM concentrations, revealing both spatial and seasonal variations in this relationship.

Keywords

References

  1. Sci Total Environ. 2019 Feb 1;649:1563-1572 [PMID: 30308924]
  2. Sci Adv. 2020 Jul 17;6(29):eaba5692 [PMID: 32832626]
  3. Int J Hyg Environ Health. 2016 May;219(3):301-10 [PMID: 26725170]
  4. Environmetrics. 2017 Aug;28(5): [PMID: 29081678]
  5. J Am Stat Assoc. 2003;98(462):387-396 [PMID: 39421645]
  6. Front Public Health. 2022 Apr 11;10:810098 [PMID: 35480572]
  7. Environ Resour Econ (Dordr). 2020;76(4):611-634 [PMID: 32836855]
  8. J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848 [PMID: 19750209]
  9. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25601-25608 [PMID: 32958653]
  10. Stat Interface. 2016;9(4):399-414 [PMID: 27695593]
  11. Ann Stat. 2009 Feb;37(1):427-458 [PMID: 20126281]
  12. J Agric Biol Environ Stat. 2019;24(3):398-425 [PMID: 31496633]
  13. Int J Environ Res Public Health. 2017 Dec 05;14(12): [PMID: 29206181]
  14. J Am Stat Assoc. 2022;117(538):969-982 [PMID: 35935897]
  15. Biostatistics. 2003 Apr;4(2):297-312 [PMID: 12925523]
  16. Biometrika. 2018 Mar;105(1):165-184 [PMID: 30686828]
  17. Eur Heart J. 2019 May 21;40(20):1590-1596 [PMID: 30860255]
  18. J Am Stat Assoc. 2007 Mar;102(477):321-331 [PMID: 19079638]

Grants

  1. R01 AG085616/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0PMmeteorologicalspatiotemporalheterogeneitycoefficientregressionDEMsubstantialconcentrationsdynamicsrelationshipvaryingmodelspatialdatasetsdistributedestimationmethoddemonstratingproposedUSParticulatematteremergedprimaryairqualityconcerndueimpacthumanhealthManyrecentresearchworkssuggestdependconditionsEnhancingcurrentpollutioncontrolstrategiesnecessitatesholisticcomprehensionprecisequantificationfactorslevelsstandsprominenttechniqueadeptaddressingAmidstchallengesposedscalemodernproposepioneeringfoundedmultivariatesplinesmoothingacrossdomain'striangulationalgorithmensureseasilyimplementablehighlyscalablecommunication-efficientstrategyalmostlinearspeeduppotentialvalidateeffectivenessextensivesimulationstudiesachievesestimationsakinglobalestimatorsderivedcompleteApplyingdailydatainvestigateinfluencevariablesrevealingseasonalvariationsExploringinfluencesPM:learningapproachmodelsDistributedDomaindecompositionNonparametricSpatiotemporalTensorproductsplines

Similar Articles

Cited By