Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model.

Jonathan J Halama, Robert B McKane, Bradley L Barnhart, Paul P Pettus, Allen F Brookes, Angela K Adams, Catherine K Gockel, Kevin S Djang, Vivian Phan, Sonali M Chokshi, James J Graham, Zhenyu Tian, Katherine T Peter, Edward P Kolodziej
Author Information
  1. Jonathan J Halama: U.S. Environmental Protection Agency, Corvallis, OR, United States.
  2. Robert B McKane: U.S. Environmental Protection Agency, Corvallis, OR, United States.
  3. Bradley L Barnhart: Independent Researcher, Middleton, WI, United States.
  4. Paul P Pettus: U.S. Environmental Protection Agency, Corvallis, OR, United States.
  5. Allen F Brookes: U.S. Environmental Protection Agency, Corvallis, OR, United States.
  6. Angela K Adams: U.S. Environmental Protection Agency, Seattle, WA, United States.
  7. Catherine K Gockel: U.S. Environmental Protection Agency, Seattle, WA, United States.
  8. Kevin S Djang: Inoventures Inc, Corvallis, OR, United States.
  9. Vivian Phan: U.S. Environmental Protection Agency, Corvallis, OR, United States.
  10. Sonali M Chokshi: U.S. Environmental Protection Agency, Corvallis, OR, United States.
  11. James J Graham: Cal Poly Humboldt, Arcata, CA, United States.
  12. Zhenyu Tian: Northeastern University, Boston, MA, United States.
  13. Katherine T Peter: Center for Urban Waters, Tacoma, WA, United States.
  14. Edward P Kolodziej: Center for Urban Waters, Tacoma, WA, United States.

Abstract

Coho salmon () are highly sensitive to 6PPD-Quinone (6PPD-Q). Details of the hydrological and biogeochemical processes controlling spatial and temporal dynamics of 6PPD-Q fate and transport from points of deposition to receiving waters (e.g., streams, estuaries) are poorly understood. To understand the fate and transport of 6PPD and mechanisms leading to salmon mortality Visualizing Ecosystem Land Management Assessments (VELMA), an ecohydrological model developed by US Environmental Protection Agency (EPA), was enhanced to better understand and inform stormwater management planning by municipal, state, and federal partners seeking to reduce stormwater contaminant loads in urban streams draining to the Puget Sound National Estuary. This work focuses on the 5.5 km2 Longfellow Creek upper watershed (Seattle, Washington, United States), which has long exhibited high rates of acute urban runoff mortality syndrome in Coho salmon. We present VELMA model results to elucidate these processes for the Longfellow Creek watershed across multiple scales-from 5-m grid cells to the entire watershed. Our results highlight hydrological and biogeochemical controls on 6PPD-Q flow paths, and hotspots within the watershed and its stormwater infrastructure, that ultimately impact contaminant transport to Longfellow Creek and Puget Sound. Simulated daily average 6PPD-Q and available observed 6PPD-Q peak in-stream grab sample concentrations (ng/L) corresponds within plus or minus 10 ng/L. Most importantly, VELMA's high-resolution spatial and temporal analysis of 6PPD-Q hotspots provides a tool for prioritizing the locations, amounts, and types of green infrastructure that can most effectively reduce 6PPD-Q stream concentrations to levels protective of Coho salmon and other aquatic species.

Keywords

References

  1. Integr Environ Assess Manag. 2011 Oct;7(4):648-56 [PMID: 21786416]
  2. Int J Environ Res Public Health. 2017 Oct 20;14(10): [PMID: 29053641]
  3. J Cheminform. 2017 Nov 28;9(1):61 [PMID: 29185060]
  4. Environ Int. 2014 Oct;71:46-62 [PMID: 24972248]
  5. Environ Sci Technol. 2013 Aug 6;47(15):8138-47 [PMID: 23841521]
  6. Environ Sci Technol. 2023 Feb 14;57(6):2393-2403 [PMID: 36720114]
  7. Environ Sci Technol. 2022 Mar 1;56(5):3159-3169 [PMID: 35166536]
  8. Water (Basel). 2018;10(8):991 [PMID: 31396407]
  9. PLoS One. 2011;6(12):e28013 [PMID: 22194802]
  10. PLOS Water. 2023 Nov 20;2(11):1-23 [PMID: 38783969]
  11. Environ Pollut. 2024 Jan 1;340(Pt 2):122828 [PMID: 37907191]
  12. Ecol Appl. 2017 Dec;27(8):2382-2396 [PMID: 29044812]
  13. PLoS One. 2019 Mar 22;14(3):e0214399 [PMID: 30901374]
  14. Appl Geochem. 2020 Aug 1;119:1-104632 [PMID: 33746355]
  15. Bull Environ Contam Toxicol. 2023 Nov 9;111(6):68 [PMID: 37940736]
  16. J Hazard Mater. 2023 Oct 5;459:132127 [PMID: 37573823]
  17. Arch Environ Contam Toxicol. 2022 Feb;82(2):171-179 [PMID: 34347118]
  18. Science. 2021 Jan 8;371(6525):185-189 [PMID: 33273063]
  19. Environ Pollut. 2014 Apr;187:182-92 [PMID: 24514076]
  20. Environ Toxicol Chem. 2013 Sep;32(9):2165-74 [PMID: 23703873]
  21. J Environ Manage. 2021 Jan 1;277:111418 [PMID: 33080432]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.06PPD-QstormwatersalmontransportcontaminanturbanwatershedfateVELMAmodelLongfellowCreekcohohotspotsconcentrations6PPD-QuinonehydrologicalbiogeochemicalprocessesspatialtemporalstreamsunderstandmortalityecohydrologicalreducePugetSound5resultswithininfrastructureng/LanalysisstreamCohohighlysensitiveDetailscontrollingdynamicspointsdepositionreceivingwatersegestuariespoorlyunderstood6PPDmechanismsleadingVisualizingEcosystemLandManagementAssessmentsdevelopedUSEnvironmentalProtectionAgencyEPAenhancedbetterinformmanagementplanningmunicipalstatefederalpartnersseekingloadsdrainingNationalEstuaryworkfocuseskm2upperSeattleWashingtonUnitedStateslongexhibitedhighratesacuterunoffsyndromepresentelucidateacrossmultiplescales-from5-mgridcellsentirehighlightcontrolsflowpathsultimatelyimpactSimulateddailyaverageavailableobservedpeakin-streamgrabsamplecorrespondsplusminus10importantlyVELMA'shigh-resolutionprovidestoolprioritizinglocationsamountstypesgreencaneffectivelylevelsprotectiveaquaticspeciesWatershedusingprocess-based6PPD-quinoneTRWPmodeling

Similar Articles

Cited By (2)