Physicochemical properties of edible cricket oils: Implications for use in pharmaceutical and food industries.

Dorothy K Murugu, Arnold N Onyango, Alex K Ndiritu, Dorothy N Nyangena, Isaac M Osuga, Xavier Cheseto, Sevgan Subramanian, Sunday Ekesi, Chrysantus M Tanga
Author Information
  1. Dorothy K Murugu: International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya.
  2. Arnold N Onyango: Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya.
  3. Alex K Ndiritu: Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya.
  4. Dorothy N Nyangena: International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya.
  5. Isaac M Osuga: Department of Animal Science, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya.
  6. Xavier Cheseto: International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya.
  7. Sevgan Subramanian: International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya.
  8. Sunday Ekesi: International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya.
  9. Chrysantus M Tanga: International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100 Nairobi, Kenya.

Abstract

The prevailing global market demands locally produced, sustainable oils for biomedical applications. This study focused on evaluating the quality of cricket-derived oils and meals from Hugel, Tanga, and De Geer common delicacy in Africa, following standard methods for physicochemical properties, fatty acid composition, and phytochemicals (oxalates, phytates, tannins, and polyphenols). The cricket oils physicochemical properties aligned with Codex Alimentarius standards for edible oils, including low solidification temperature (< 2 ��C), a high refractive index (1.46), and a specific gravity of 0.88. Notably, peroxide values (1.9 to 2.5 mg mEq O2/kg), acid values (1.1 to 2.2 mg KOH/g), and saponification values (234-246 mg KOH/g) all are indicative of lightness and unsaturated fatty acids. Nutritionally, cricket powder was rich in protein (56.8-56.9% -) and fat (31.7-33.5% -of dry matter), with significant amounts of essential omega-3 and omega-6 fatty acids. Predominant saturated and monounsaturated fatty acids were palmitic (23.9-31.2 mg/100 g-) and oleic acids (10.9-11.4 mg/100 g- of oil), respectively. Antioxidant values (48.0 to 65.0 mg/100 g), inferred from total polyphenols, suggests a stable oil with long shelf-life. These results highlight the promising and sustainable potential of cricket-derived oils for applications in the food and pharmaceutical industries.

Keywords

References

  1. Foods. 2021 Apr 03;10(4): [PMID: 33916741]
  2. Foods. 2020 Jun 18;9(6): [PMID: 32570724]
  3. Zoo Biol. 2007 Mar;26(2):105-15 [PMID: 19360565]
  4. Front Nutr. 2021 Jan 12;7:537915 [PMID: 33511150]
  5. CMAJ. 2002 Mar 5;166(5):608-15 [PMID: 11898942]
  6. Food Chem. 2019 Jan 30;272:267-272 [PMID: 30309543]
  7. Mini Rev Med Chem. 2013 Feb;13(2):201-10 [PMID: 23278117]
  8. Pharmacol Res. 2010 Mar;61(3):200-7 [PMID: 19897038]
  9. Food Chem. 2012 Oct 15;134(4):1885-91 [PMID: 23442634]
  10. J Ethnobiol Ethnomed. 2017 Nov 13;13(1):60 [PMID: 29132398]
  11. Food Chem. 2021 Jul 1;349:129077 [PMID: 33571921]
  12. J Oleo Sci. 2016;65(1):9-20 [PMID: 26743667]
  13. PLoS One. 2015 Dec 23;10(12):e0144601 [PMID: 26699129]
  14. Neurosci Biobehav Rev. 1992 Summer;16(2):193-205 [PMID: 1630730]
  15. PLoS One. 2015 May 13;10(5):e0127171 [PMID: 25970517]
  16. J Sci Food Agric. 2014 Apr;94(6):1057-70 [PMID: 24227349]
  17. Chin J Nat Med. 2017 Oct;15(10):721-731 [PMID: 29103457]
  18. Front Nutr. 2021 Aug 10;8:704002 [PMID: 34447775]
  19. Toxicol Res (Camb). 2020 Jul 27;9(4):474-483 [PMID: 32905142]
  20. Lipids. 2002 Dec;37(12):1113-23 [PMID: 12617463]
  21. Bioresour Technol. 2003 Jan;86(2):203-5 [PMID: 12653289]
  22. Fitoterapia. 2017 Nov;123:51-58 [PMID: 28964873]
  23. J Am Coll Nutr. 2002 Dec;21(6):495-505 [PMID: 12480795]
  24. Food Sci Technol Int. 2021 Jul;27(5):383-391 [PMID: 32962449]
  25. Microbiol Res. 2021 Jan;242:126640 [PMID: 33223380]
  26. Nutrients. 2010 Jun;2(6):611-25 [PMID: 22254045]
  27. Cell Death Dis. 2020 Feb 3;11(2):83 [PMID: 32015327]
  28. Foods. 2019 Nov 13;8(11): [PMID: 31766306]
  29. Zootaxa. 2018 Sep 28;4486(3):393-392 [PMID: 30313752]
  30. Adv Nutr. 2012 Jan;3(1):1-7 [PMID: 22332096]

Word Cloud

Created with Highcharts 10.0.0oils2fatty1valuesacidspropertiescricket0mgmg/100oilfoodsustainableapplicationscricket-derivedphysicochemicalacidpolyphenolsedibleKOH/gg-pharmaceuticalindustriesprevailingglobalmarketdemandslocallyproducedbiomedicalstudyfocusedevaluatingqualitymealsHugelTangaDeGeercommondelicacyAfricafollowingstandardmethodscompositionphytochemicalsoxalatesphytatestanninsalignedCodexAlimentariusstandardsincludinglowsolidificationtemperature<��Chighrefractiveindex46specificgravity88Notablyperoxide95mEqO2/kgsaponification234-246indicativelightnessunsaturatedNutritionallypowderrichprotein568-569%-fat317-335%-ofdrymattersignificantamountsessentialomega-3omega-6Predominantsaturatedmonounsaturatedpalmitic239-31oleic109-114respectivelyAntioxidant4865ginferredtotalsuggestsstablelongshelf-liferesultshighlightpromisingpotentialPhysicochemicaloils:ImplicationsuseCricketEdibleinsectsNovelingredientsNutraceuticalsOilstabilityshelflife

Similar Articles

Cited By