Endotoxin, a novel biomarker for the rapid risk assessment of faecal contamination of coastal and transitional waters.

Christian R Good, Alistair White, Joao Brandao, Simon Jackson
Author Information
  1. Christian R Good: Molendotech Limited, Brixham Laboratory, Blackball Lane, Freshwater Quarry, Brixham TQ5 8BA, UK.
  2. Alistair White: Molendotech Limited, Brixham Laboratory, Blackball Lane, Freshwater Quarry, Brixham TQ5 8BA, UK.
  3. Joao Brandao: National Institute of Health Doutor Ricardo Jorge, Department of Environmental Health, Av. Padre Cruz, Lisboa 1649-016, Portugal; Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande, Lisboa 1649-004, Portugal.
  4. Simon Jackson: Molendotech Limited, Brixham Laboratory, Blackball Lane, Freshwater Quarry, Brixham TQ5 8BA, UK; School of Biomedical Science, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK E-mail: simon.jackson@molendotech.com. ORCID

Abstract

Current methods for testing water for faecal contamination rely on the culture of faecal indicator bacteria (FIB; and ) that take 24-48 h, which leads to delays in taking proactive measures and poses a risk to public health. More rapid methods are therefore required. Here, we have tested a rapid, portable assay (Bacterisk) that detects the bacterial biomarker endotoxin in 30 min to quantify the bacterial biomass present, to evaluate 159 coastal water samples and to compare the results with the traditional culture of FIB. There was a significant correlation between the Bacterisk data given in endotoxin risk (ER) units and FIB culture that could accurately distinguish between poor and sufficient or good quality bathing water using the EU bathing directive values. Receiver operating characteristic analysis was used to determine the optimal ER threshold for coastal water samples, and the area under the curve was 0.9176 with a -value of <0.0001. The optimal threshold was 7,300 ER units with a sensitivity of 95.45% and a specificity of 83.48%. In conclusion, we have shown that the Bacterisk assay provides a rapid and easy-to-use method to assess bathing water quality.

Keywords

References

  1. Bathing Water Regulations 2013 No. 1675. UK Government.
  2. B��rger T., Campbell D., White M. P., Elliott L. R., Fleming L. E., Garrett J. K., Hattam C., Hynes S., Lankia T. & Taylor T. 2021 The value of blue-space recreation and perceived water quality across Europe: A contingent behaviour study. Science of the Total Environment 771, 145597.
  3. Chang G. W., Brill J. & Lum R. 1989 Proportion of beta-D-glucuronidase-negative in human fecal samples. Applied and Environmental Microbiology 55 (2), 335���339. [>PMCID: ]
  4. Dodds R. & Holmes M. R. 2018 Education and certification for beach management: Is there a difference between residents versus visitors? Ocean & Coastal Management 160, 124���132.
  5. Dufour A. 2021 A short history of methods used to measure bathing beach water quality. Journal of Microbiological Methods 181, 106134. [>PMCID: ]
  6. Evans T. M., Schillinger J. E. & Stuart D. G. 1978 Rapid determination of bacteriological water quality by using Limulus lysate. Applied and Environmental Microbiology 35 (2), 376���382. [>PMCID: ]
  7. Fouz N., Pangesti K. N. A., Yasir M., Al-Malki A. L., Azhar E. I., Hill-Cawthorne G. A. & Abd El Ghany M. 2020 The contribution of wastewater to the transmission of antimicrobial resistance in the environment: Implications of mass gathering settings. Tropical Medicine and Infectious Disease 5 (1). doi: 10.3390/tropicalmed5010033. [>PMCID: ]
  8. Gorman A. & Golovanov A. P. 2022 Lipopolysaccharide structure and the phenomenon of low endotoxin recovery. European Journal of Pharmaceutics and Biopharmaceutics 180, 289���307. [PMID: 36272656]
  9. Haas C. N., Meyer M. A., Paller M. S. & Zapkin M. A. 1983 The utility of endotoxins as a surrogate indicator in potable water microbiology. Water Research 17 (7), 803���807.
  10. Holcomb D. A. & Stewart J. R. 2020 Microbial indicators of fecal pollution: Recent progress and challenges in assessing water quality. Current Environmental Health Reports 7 (3), 311���324. [>PMCID: ]
  11. Janda J. M. & Abbott S. L. 2010 The genus : taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews 23 (1), 35���73. [>PMCID: ]
  12. Jorgensen J. H., Carvajal H. F., Chipps B. E. & Smith R. F. 1973 Rapid detection of Gram-negative bacteriuria by use of the Limulus endotoxin assay. Applied Microbiology 26 (1), 38���42. [>PMCID: ]
  13. Jorgensen J. H., Lee J. C., Alexander G. A. & Wolf H. W. 1979 Comparison of Limulus assay, standard plate count, and total coliform count for microbiological assessment of renovated wastewater. Applied and Environmental Microbiology 37 (5), 928���931. [>PMCID: ]
  14. Kim W. J., Managaki S., Furumai H. & Nakajima F. 2009 Diurnal fluctuation of indicator microorganisms and intestinal viruses in combined sewer system. Water Science and Technology 60 (11), 2791���2801. [PMID: 19934500]
  15. Leonard A. F. C., Garside R., Ukoumunne O. C. & Gaze W. H. 2020 A cross-sectional study on the prevalence of illness in coastal bathers compared to non-bathers in England and Wales: Findings from the beach user health survey. Water Research 176, 115700. [PMID: 32234605]
  16. Lothigius A., Sj��ling A., Svennerholm A. M. & B��lin I. 2010 Survival and gene expression of enterotoxigenic during long-term incubation in sea water and freshwater. Journal of Applied Microbiology 108 (4), 1441���1449. [PMID: 19804537]
  17. Maga��a J. T., Galbis D. M., Montero S. M. & Clusella N. P. I. 2013 The lipopolysaccharide of Aeromonas spp: structure-activity relationships. Current Topics in Biochemical Research 15 (2), 41���56.
  18. Mansilha C. R., Coelho C. A., Reinas A., Moutinho A., Ferreira S., Pizarro C. & Tavares A. 2010 : The forgotten pathogen: Health hazards of compliance with European bathing water legislation. Marine Pollution Bulletin 60 (6), 819���826. [PMID: 20152993]
  19. Milton D. K., Feldman H. A., Neuberg D. S., Bruckner R. J. & Greaves I. A. 1992 Environmental endotoxin measurement: The kinetic Limulus assay with resistant-parallel-line estimation. Environmental Research 57 (2), 212���230. [PMID: 1568442]
  20. Motlagh A. M. & Yang Z. 2019 Detection and occurrence of indicator organisms and pathogens. Water Environment Research 91 (10), 1402���1408. [>PMCID: ]
  21. Nahm F. S. 2022 Receiver operating characteristic curve: Overview and practical use for clinicians. Korean Journal of Anesthesiology 75 (1), 25���36. [>PMCID: ]
  22. Overbury K., Conroy B. W. & Marks E. 2023 Swimming in nature: A scoping review of the mental health and wellbeing benefits of open water swimming. Journal of Environmental Psychology 90, 102073.
  23. Sattar A. A., Jackson S. K. & Bradley G. 2013 The potential of lipopolysaccharide as a real-time biomarker of bacterial contamination in marine bathing water. Journal of Water and Health 12 (1), 105���112.
  24. Sattar A. A., Good C. R., Saletes M., Brand��o J. & Jackson S. K. 2022 Endotoxin as a marker for water quality. International Journal of Environmental Research and Public Health 19 (24), 16528. [>PMCID: ]
  25. Shadix L. C. & Rice E. W. 1991 Evaluation of beta-glucuronidase assay for the detection of from environmental waters. Canadian Journal of Microbiology 37 (12), 908���911. [PMID: 1806210]
  26. Shah A. H., Abdelzaher A. M., Phillips M., Hernandez R., Solo-Gabriele H. M., Kish J., Scorzetti G., Fell J. W., Diaz M. R., Scott T. M., Lukasik J., Harwood V. J., McQuaig S., Sinigalliano C. D., Gidley M. L., Wanless D., Ager A., Lui J., Stewart J. R., Plano L. R. & Fleming L. E. 2011 Indicator microbes correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical recreational beach site. Journal of Applied Microbiology 110 (6), 1571���1583. [PMID: 21447014]
  27. Tiwari A., Niemel�� S. I., Veps��l��inen A., Rapala J., Kalso S. & Pitk��nen T. 2016 Comparison of Colilert-18 with miniaturised most probable number method for monitoring of in bathing water. Journal of Water and Health 14 (1), 121���131. [PMID: 26837836]
  28. Topi�� N., Cenov A., Jozi�� S., Glad M., Mance D., Lu��i�� D., Kapetanovi�� D., Mance D. & Vuki�� Lu��i�� D. 2021 ��� An additional parameter of bathing water quality for crowded urban beaches. International Journal of Environmental Research and Public Health 18 (10), 5234. [>PMCID: ]
  29. Watson S. W., Novitsky T. J., Quinby H. L. & Valois F. W. 1977 Determination of bacterial number and biomass in the marine environment. Applied and Environmental Microbiology 33 (4), 940���946. [>PMCID: ]
  30. WHO 2018 WHO recommendations on scientific, analytical and epidemiological developments relevant to the parameters for bathing water quality in the bathing water directive (2006/7/EC) 2018. Geneva: Switzerland.
  31. Youden W. J. 1950 Index for rating diagnostic tests. Cancer 3 (1), 32���35. [PMID: 15405679]

MeSH Term

Feces
Endotoxins
Environmental Monitoring
Seawater
Risk Assessment
Biomarkers
Water Microbiology
Bathing Beaches
Escherichia coli
Water Quality

Chemicals

Endotoxins
Biomarkers

Word Cloud

Created with Highcharts 10.0.0waterrapidfaecalBacteriskbathingcultureFIBriskendotoxincoastalERqualitymethodscontaminationindicatorbacteriapublichealthassaybacterialbiomarkersamplesunitsoptimalthresholdmethodCurrenttestingrelytake24-48hleadsdelaystakingproactivemeasuresposesthereforerequiredtestedportabledetects30minquantifybiomasspresentevaluate159compareresultstraditionalsignificantcorrelationdatagivenaccuratelydistinguishpoorsufficientgoodusingEUdirectivevaluesReceiveroperatingcharacteristicanalysisuseddetermineareacurve09176-value<000017300sensitivity9545%specificity8348%conclusionshownprovideseasy-to-useassessEndotoxinnovelassessmenttransitionalwaters

Similar Articles

Cited By