Effects of stress-dependent growth on evolution of sulcal direction and curvature in models of cortical folding.

Ramin Balouchzadeh, Philip V Bayly, Kara E Garcia
Author Information
  1. Ramin Balouchzadeh: Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri, United States of America.
  2. Philip V Bayly: Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri, United States of America.
  3. Kara E Garcia: Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri, United States of America.

Abstract

The majority of human brain folding occurs during the third trimester of gestation. Although many studies have investigated the physical mechanisms of brain folding, a comprehensive understanding of this complex process has not yet been achieved. In mechanical terms, the "differential growth hypothesis" suggests that the formation of folds results from a difference in expansion rates between cortical and subcortical layers, which eventually leads to mechanical instability akin to buckling. It has also been observed that axons, a substantial component of subcortical tissue, can elongate or shrink under tensile or compressive stress, respectively. Previous work has proposed that this cell-scale behavior in aggregate can produce stress-dependent growth in the subcortical layers. The current study investigates the potential role of stress-dependent growth on cortical surface morphology, in particular the variations in folding direction and curvature over the course of development. Evolution of sulcal direction and mid-cortical surface curvature were calculated from finite element simulations of three-dimensional folding in four different initial geometries: (i) sphere; (ii) axisymmetric oblate spheroid; (iii) axisymmetric prolate spheroid; and (iv) triaxial spheroid. The results were compared to mid-cortical surface reconstructions from four preterm human infants, imaged and analyzed at four time points during the period of brain folding. Results indicate that models incorporating subcortical stress-dependent growth predict folding patterns that more closely resemble those in the developing human brain.
Statement of Significance: Cortical folding is a critical process in human brain development. Aberrant folding is associated with disorders such as autism and schizophrenia, yet our understanding of the physical mechanism of folding remains limited. Ultimately mechanical forces must shape the brain. An important question is whether mechanical forces simply deform tissue elastically, or whether stresses in the tissue modulate growth. Evidence from this paper, consisting of quantitative comparisons between patterns of folding in the developing human brain and corresponding patterns in simulations, supports a key role for stress-dependent growth in cortical folding.

Keywords

References

  1. Ann Neurol. 1977 Jan;1(1):86-93 [PMID: 560818]
  2. Cortex. 2019 Sep;118:315-326 [PMID: 30503630]
  3. J Biomech Eng. 2010 Jul;132(7):071013 [PMID: 20590291]
  4. Cell Motil Cytoskeleton. 1990;17(1):6-10 [PMID: 2225090]
  5. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):32868-32879 [PMID: 33323481]
  6. Sci Rep. 2021 Apr 8;11(1):7686 [PMID: 33833302]
  7. Biomech Model Mechanobiol. 2017 Jun;16(3):907-920 [PMID: 27933417]
  8. Acta Biomater. 2017 Jan 15;48:319-340 [PMID: 27989920]
  9. J Biomech. 1994 Apr;27(4):455-67 [PMID: 8188726]
  10. Biomech Model Mechanobiol. 2021 Apr;20(2):555-567 [PMID: 33151429]
  11. Cereb Cortex. 2005 Dec;15(12):1900-13 [PMID: 15758198]
  12. J Mech Behav Biomed Mater. 2014 Jan;29:568-81 [PMID: 23566768]
  13. Neuroimage. 2016 Jan 15;125:780-790 [PMID: 26550941]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032701 [PMID: 26465492]
  15. Neuroimage. 2004;23 Suppl 1:S129-38 [PMID: 15501082]
  16. Dev Biol. 1984 Apr;102(2):379-89 [PMID: 6706005]
  17. Science. 1975 Jul 4;189(4196):18-21 [PMID: 1135626]
  18. Dev Neurobiol. 2010 Feb 15;70(3):135-49 [PMID: 19950193]
  19. Neuroimage. 2008 Jun;41(2):462-78 [PMID: 18400518]
  20. J Mech Behav Biomed Mater. 2012 Feb;6:166-73 [PMID: 22301186]
  21. Cereb Cortex. 2019 Dec 17;29(11):4697-4708 [PMID: 30721930]
  22. Brain Cogn. 2010 Feb;72(1):36-45 [PMID: 19942335]
  23. Int J Imaging Syst Technol. 2008 Jun 1;18(1):42-68 [PMID: 19936261]
  24. Phys Rev Lett. 2018 Nov 30;121(22):228002 [PMID: 30547630]
  25. J Cell Biol. 1989 Dec;109(6 Pt 1):3073-83 [PMID: 2592415]
  26. PLoS One. 2021 Sep 15;16(9):e0249384 [PMID: 34525113]
  27. Annu Rev Neurosci. 2003;26:355-80 [PMID: 14527269]
  28. J Mech Behav Biomed Mater. 2015 Jun;46:318-30 [PMID: 25819199]
  29. Ann Biomed Eng. 2015 Jul;43(7):1640-53 [PMID: 25824370]
  30. J Neurosci. 2004 Sep 8;24(36):7978-83 [PMID: 15356212]
  31. J Neurosci. 2020 Jun 24;40(26):4997-5007 [PMID: 32444384]
  32. Anat Embryol (Berl). 1988;179(2):173-9 [PMID: 3232854]
  33. J Neurosci. 2010 Feb 10;30(6):2268-76 [PMID: 20147553]
  34. Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3156-3161 [PMID: 29507201]
  35. Cereb Cortex. 2011 Jul;21(7):1674-94 [PMID: 21127018]
  36. Sci Rep. 2014 Jul 10;4:5644 [PMID: 25008163]
  37. Phys Med Biol. 2016 Dec 21;61(24):R401-R437 [PMID: 27845941]
  38. Hum Brain Mapp. 2013 May;34(5):1230-44 [PMID: 22331577]
  39. J Cell Sci. 1997 May;110 ( Pt 10):1179-86 [PMID: 9191042]
  40. Brain Multiphys. 2021;2: [PMID: 34109320]
  41. J Mech Behav Biomed Mater. 2018 Apr;80:222-234 [PMID: 29453025]
  42. Arch Dis Child. 1973 Oct;48(10):757-67 [PMID: 4796010]
  43. Clin EEG Neurosci. 2020 Jul;51(4):275-284 [PMID: 32028799]
  44. Nature. 1997 Jan 23;385(6614):313-8 [PMID: 9002514]
  45. J Neurosci. 1991 Apr;11(4):1117-25 [PMID: 2010807]
  46. J Mech Behav Biomed Mater. 2017 Oct;74:463-476 [PMID: 28756040]
  47. J Comp Neurol. 1990 Jul 15;297(3):441-70 [PMID: 2398142]
  48. Eur J Paediatr Neurol. 2021 Nov;35:67-73 [PMID: 34653829]
  49. Biophys J. 2003 Jul;85(1):623-36 [PMID: 12829516]
  50. Acta Biomater. 2017 Sep 15;60:315-329 [PMID: 28658600]
  51. Neuroimage. 2010 Nov 15;53(3):1103-8 [PMID: 20176115]
  52. Phys Med Biol. 2011 Apr 21;56(8):2391-406 [PMID: 21427486]
  53. Brain Cogn. 2010 Feb;72(1):26-35 [PMID: 19595493]
  54. Radiology. 1998 Oct;209(1):57-66 [PMID: 9769812]
  55. Phys Life Rev. 2019 Dec;31:233-239 [PMID: 30738760]
  56. Phys Biol. 2013 Feb;10(1):016005 [PMID: 23357794]
  57. J Mech Behav Biomed Mater. 2013 Dec;28:71-85 [PMID: 23973615]
  58. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12667-72 [PMID: 25136099]
  59. Nat Commun. 2021 Nov 18;12(1):6681 [PMID: 34795256]
  60. Cereb Cortex. 2014 Aug;24(8):2219-28 [PMID: 23542881]

Grants

  1. R01 NS111948/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0foldingbraingrowthhumanstress-dependentmechanicalcorticalsubcorticaltissuesurfacedirectioncurvaturedevelopmentfourspheroidpatternsphysicalunderstandingprocessyetresultslayerscanrolesulcalmid-corticalsimulationsaxisymmetricmodelsdevelopingCorticalforceswhethermajorityoccursthirdtrimestergestationAlthoughmanystudiesinvestigatedmechanismscomprehensivecomplexachievedterms"differentialhypothesis"suggestsformationfoldsdifferenceexpansionrateseventuallyleadsinstabilityakinbucklingalsoobservedaxonssubstantialcomponentelongateshrinktensilecompressivestressrespectivelyPreviousworkproposedcell-scalebehavioraggregateproducecurrentstudyinvestigatespotentialmorphologyparticularvariationscourseEvolutioncalculatedfiniteelementthree-dimensionaldifferentinitialgeometries:sphereiioblateiiiprolateivtriaxialcomparedreconstructionspreterminfantsimagedanalyzedtimepointsperiodResultsindicateincorporatingpredictcloselyresembleStatementSignificance:criticalAberrantassociateddisordersautismschizophreniamechanismremainslimitedUltimatelymustshapeimportantquestionsimplydeformelasticallystressesmodulateEvidencepaperconsistingquantitativecomparisonscorrespondingsupportskeyEffectsevolutionBrainGrowthHyperelasticityModelingViscoelasticity

Similar Articles

Cited By