Biological Iron Removal and Recovery from Water and Wastewater.

Anna Henriikka Kaksonen, Eberhard Janneck
Author Information
  1. Anna Henriikka Kaksonen: Commonwealth Scientific and industrial Research Organisation (CSIRO) Environment, Floreat, WA, Australia. anna.kaksonen@csiro.au.
  2. Eberhard Janneck: G.E.O.S. Ingenieurgesellschaft mbH, Freiberg, Germany.

Abstract

iron is a common contaminant in source water and wastewater. The mining and metallurgical industries in particular can produce and discharge large quantities of wastewater with high iron concentrations. Due to the harmful effects of iron on organisms and infrastructure, efficient technologies for iron removal from water and wastewater are needed. On the other hand, iron is a valuable commodity for a wide range of applications. Microorganisms can facilitate iron removal and recovery through aerobic and anaerobic processes. The most commonly utilized microbes include iron oxidizers that facilitate iron precipitation as jarosites, schwertmannite, ferrihydrite, goethite, and scorodite, and sulfate reducers which produce hydrogen sulfide that precipitates iron as sulfides. Biological iron removal has been explored in various suspended cell and biofilm-based bioreactors that can be configured in parallel or series and integrated with precipitation and settling units for an effective flow sheet. This chapter reviews principles for biological iron removal and recovery, the microorganisms involved, reactor types, patents and examples of laboratory- and pilot-scale studies, and full-scale implementations of the technology.

Keywords

References

  1. Rösler HJ, Lange H (1972) Geochemical Tables. Edition Leipzig. German Democratic Republic
  2. Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157:1551–1564
  3. World Health Organisation (WHO) (1996) Iron in drinking-water. Background document for development of WHO guidelines for drinking-water quality. WHO
  4. Tavsan Z, Kayali HA (2013) The effect of iron and copper as an essential nutrient on mitochondrial electron transport system and lipid peroxidation in Trichoderma harzianum. Appl Biochem Biotechnol 170:1665–1675
  5. Gell DA (2018) Structure and function of haemoglobins. Blood Cells Mol Dis 70:13–42
  6. Tian T, Yu H-Q (2020) Iron-assisted biological wastewater treatment: synergistic effect between iron and microbes. Biotechnol Adv 44:107610
  7. Rajoria S, Vashishtha M, Sangal VK (2022) Treatment of electroplating industry wastewater: a review on the various techniques. Environ Sci Pollut Res 29:72196–72246
  8. Appiah-Brempong M, Essandoh HMK, Asiedu NY, Dadzie SK, Momade FWY (2022) Artisanal tannery wastewater: quantity and characteristics. Heliyon 8:e08680
  9. Clarke LB (1995) Coal mining and water quality. IEACR no. 80, IEA Coal Research, London. 99 p
  10. Johnson B (2000) Biological removal of sulfurous compounds from inorganic wastewaters. In: Lens P, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution, principles and engineering. IWA Publishing, London, pp 175–205
  11. Robb GA (1994) Environmental consequences of coal mine closure. Geogr J 160:33–40
  12. Gray NF (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol 30:62–71
  13. Khatri N, Tyagi S, Rawtani D (2017) Recent strategies for the removal of iron from water: a review. J Water Process Eng 19:291–304
  14. Sharma SK, Petrusevski B, Schippers JC (2005) Biological iron removal from groundwater: a review. J Water Supply Res T – AQUA 54(4):239–247
  15. World Health Organisation (WHO) (2017) Guidelines for drinking-water quality. Fourth edition incorporating the first addendum. WHO
  16. Zheng Q, Zhao Y, Guo J, Zhao S, Song L, Fei C, Zhang Z, Li X, Chang C (2017) Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leuk Res 58:55–62
  17. Chai X, Li D, Cao X, Zhang Y, Mu J, Lu W, Xiao X, Li C, Meng J, Chen J, Li Q, Wang J, Meng A, Zhao M (2015) ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci Rep 5:10181
  18. Frippiat C, Dewelle J, Remacle J, Toussaint O (2002) Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic Biol Med 33:1334–1346
  19. Hartmann J, Braulke F, Sinzig U, Wulf G, Maas JH, Konietschke F, Haase D (2013) Iron overload impairs proliferation of erythroid progenitors cells (BFU-E) from patients with myelodysplastic syndromes. Leuk Res 37:327–332
  20. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063
  21. Prus E, Fibach E (2010) Effect of iron chelators on labile iron and oxidative status of thalassaemic erythroid cells. Acta Haematol 123:14–20
  22. Shao L, Li H, Pazhanisamy SK, Meng A, Wang Y, Zhou D (2011) Reactive oxygen species and hematopoietic stem cell senescence. Int J Hematol 94:24–32
  23. Alimohammadi V, Sedighi M, Jabbari E (2017) Experimental study on efficient removal of total iron from wastewater using magnetic-modified multi-walled carbon nanotubes. Ecol Eng 102:90–97
  24. Skousen JG, Ziemkiewicz PF, McDonald LM (2019) Acid mine drainage formation, control and treatment: approaches and strategies. Extr Ind Soc 6:241–249
  25. Hedrich S, Kinnunen PH-M (2023) Chapter 16 biological removal and recovery of metals from waste streams and process waters. In: Johnson DB (ed) Biomining technologies. Springer Nature, Cham, pp 275–293
  26. Hedrich S, Lünsdorf H, Kleeberg R, Heide G, Seifert J, Schlömann M (2011) Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens. Environ Sci Technol 45:7685–7692
  27. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical Equilibria and rates in natural waters. John Wiley & Sons, New York
  28. Kaksonen AH, Morris C, Rea S, Li J, Wylie J, Usher K, Ginige MP, Cheng KY, Hilario F, du Plessis C (2014) Biohydrometallurgical iron oxidation and precipitation: Part I − effect of pH on process performance. Hydrometallurgy 147–148:255–263
  29. Bosecker K (1997) Bioleaching: metal solubilisation by microbes. FEMS Microbiol Rev 20:591–604
  30. Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Microbiol 56:65–91
  31. Mouchet P (1992) From conventional to biological removal of iron and manganese in France. J AWWA 84(4):158–167
  32. Kanzaki Y, Murakami T (2013) Rate law of Fe(II) oxidation under low O conditions. Geochim Cosmochim Acta 123:338–350
  33. Sigg L, Stumm W (1989) Aquatische Chemie – Eine Einführung in die Chemie wäßriger Lösungen und natürlicher Gewässer. B.G. Teubner Verlag, Stuttgart. ISBN 3-519-23651-6
  34. Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14:511–530
  35. Gil JL, van den Brink P, De Moel P, van der Steen P, Rene ER (2022) Homogeneous ferrous iron oxidation in a pilot-scale electrocoagulation system treating municipal wastewater: a model validation and simulation study. Water Sci Technol 86(10):2555–2569
  36. Johnson DB, Kanao T, Hedrich S (2012) Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3(Article 96):1–13
  37. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular method for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, pp 3–33
  38. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764
  39. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836
  40. Ferguson SJ, Ingledew WJ (2008) Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochim Biophys Acta 1777:1471–1479
  41. Sahinkaya E, Ucar D, Kaksonen AH (2017) Bioprecipitation of metals and metalloids. In: Lens P, Rene E, Lewis A, Sahinkaya E (eds) Sustainable heavy metal remediation. Volume 1: principles and processes. Springer, pp 195–228
  42. Das GK, Acharya S, Anand S, Das RP (1996) Jarosites: a review. Min Proc Ext Met Rev 16:185–210
  43. Claassen JO, Meyer EHO, Rennie J, Sandenbergh RF (2002) Iron precipitation from zinc rich solutions: defining the Zincor process. Hydrometallurgy 67:87–108
  44. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulphate waters. Geochem Cosmochem Acta 60:2111–2121
  45. Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549–2586
  46. Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Rev Mineral Geochem 40(1):351–403
  47. Nurmi P (2009) Oxidation and control of iron in bioleaching solutions. Tampere University of Technology, Tampere
  48. Loan M, Newman OMG, Cooper RMG, Farrow JB, Parkinson GM (2006) Defining the Paragoethite process for iron removal in zinc hydrometallurgy. Hydrometallurgy 81:104–129
  49. Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191
  50. Wang H, Bigham JM, Tuovinen OH (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganims. Mater Sci Eng C26:588–592
  51. Paikaray S (2021) Environmental stability of Schwertmannite: a review. Mine Water Environ 40:570–586
  52. Zhu J, Gan M, Zhang D, Hu Y, Chai L (2013) The nature of schwertmannite and jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Mater Sci Eng C Mater Biol Appl 33:2679–2685
  53. Kaksonen AH, Morris C, Rea S, Li J, Usher K, McDonald RG, Hilario F, Hosken T, Jackson M, du Plessis C (2014) Biohydrometallurgical iron oxidation and precipitation: Part II – Jarosite precipitate characterisation and acid recovery by conversion to hematite. Hydrometallurgy 147-148:264–272
  54. Nurmi P, Özkaya B, Sasaki K, Kaksonen AH, Riekkola-Vanhanen M, Tuovinen OH, Puhakka JA (2010) Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101:7–14
  55. González-Contreras P, Weijma J, Buisman CJN (2012) Bioscorodite crystallization in an airlift reactor for arsenic removal. Cryst Growth Des 12:2699–2706
  56. González-Contreras P, Weijma J, Buisman CJN (2012) Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal. Water Res 46:5883–5892
  57. González-Contreras P, Weijma J, Van Der Weijden R, Buisman CJN (2010) Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal. Environ Sci Technol 44(2):675–680
  58. Marouane B, Klug M, As KS, Engel J, Reichel S, Janneck E, Peiffer S (2021) The potential of granulated schwertmannite adsorbents to remove oxyanions (SeO, SeO, MoO, PO, Sb(OH)) from contaminated water. J Geochem Explor 223:106708
  59. Regensprung S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239
  60. Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7(6):541–564
  61. Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9
  62. Kaksonen AH, Dopson M, Karnachuk O, Tuovinen OH, Puhakka JA (2008) Biological iron oxidation and sulfate reduction in the treatment of acid mine drainage at low temperatures. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 429–454
  63. Stackebrandt E, Stahl DA, Devereux R (1995) Taxonomic relationships. In: Barton LL (ed) Sulfate-reducing bacteria. Plenum Press, New York, pp 49–87
  64. Thauer RK, Kunow J (1995) Sulfate-reducing Archaea. In: Barton LL (ed) Sulfate-reducing bacteria. Plenum Press, New York, pp 33–48
  65. Sahinkaya E, Yurtsever A, Toker Y, Elcik H, Cakmaci M, Kaksonen AH (2015) Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor. Miner Eng 75:133–139
  66. Cheng KY, Weerasinghe-Mohottige T, Ginige M, Kaksonen AH (2023) New perspectives for bio-technical treatment of oxalate-containing waste streams from bauxite processing. Hydrometallurgy 220:106105
  67. Rittman BR, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill International Editions. Biological Sciences Series
  68. Hernández-Calderón OM, González-Llanes MD, Rios-Iribe EY, Jiménez-Lam SA, Chavez-Parga MC, Escamilla-Silva EM (2017) Hydrodynamics and mass transfer simulation in airlift bioreactor with settler using computational fluid dynamics. Int J Chem React Eng 15(4):20160173
  69. Kaksonen AH, Morris C, Hilario F, Rea S, Li J, Usher K, Wylie J, Ginige M, Cheng KY, du Plessis C (2014) Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor. Hydrometallurgy 150:227–235
  70. Saidulu D, Majumder A, Gupta AK (2021) A systematic review of moving bed biofilm reactor, membrane bioreactor, and moving bed membrane bioreactor for wastewater treatment: comparison of research trends, removal mechanisms, and performance. J Environ Chem Eng 9:106112
  71. Rodgers M, Zhan X-M (2003) Moving-medium biofilm reactors. Rev Environ Sci Biotechnol 2:213–224
  72. Brassinga RD, Fulford GD, McCready RGL, Gould WD, Beaudette L (1992) Biodegradation of oxalate ions in aqueous solution. Australian Patent AU-B-39465/89. Alcan International Limited, Assignee
  73. Droste RL (1997) Theory and practice of water and wastewater treatment. John Wiley & Sons, New York
  74. Mba D, Bannister RH, Findlay GE (1999) Mechanical redesign of the rotating biological contactor. Water Res 33:3679–3688
  75. Özkaya B, Kaksonen AH, Sahinkaya E, Puhakka JA (2019) Fluidized bed reactor biotechnology for multiple environmental engineering solutions. Water Res 150:452–465
  76. Safwat SM (2019) Moving bed biofilm reactors for wastewater treatment: a review of basic concepts. Int J Res 6(10):85–90
  77. McSweeney NJ, Plumb JJ, Tilbury AL, Nyeboer HJ, Sumich ME, McKinnon AJ, Franzmann PD, Sutton DC, Kaksonen AH (2011) Comparison of microbial communities in pilot-scale bioreactors treating Bayer liquor organic wastes. Biodegradation 22:397–407
  78. McQuarrie JP, Boltz JP (2011) Moving bed biofilm reactor technology: process applications, design and performance. Water Environ Res 83(6):560–575
  79. Barwal A, Chaudhary R (2014) To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review. Rev Environ Sci Biotechnol 13:285–299
  80. Madan S, Madan R, Hussain A (2022) Advancement in biological wastewater treatment using hybrid moving bed biofilm reactor (MBBR): a review. Appl Water Sci 12:141
  81. Water Environment Federation (2011) Manual of practice no. 35. McGraw-Hill, New York
  82. Gómez JM, Cantero D (2003) Kinetic study of biological ferrous sulphate oxidation by iron-oxidising bacteria in continuous stirred tank and packed bed bioreactors. Process Biochem 38:867–875
  83. Halfmeier H, Schafer-Treffenfeldt W, Reuss M (1993) Potential of Thiobacillus ferrooxidans for waste gas purification. Part 1. Kinetics of continuous ferrous iron oxidation. Appl Microbiol Biotechnol 40:416–420
  84. Parada P, Morales P, Collao R, Bobadilla R (2013) Biomass production and inoculation of industrial bioleaching processes. Adv Mater Res 825:296–300
  85. Ebrahimi S, Fernández Morales FJ, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM (2005) High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier. Biotechnol Bioeng 90:462–472
  86. Armentia H, Webb C (1992) Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized in polyurethane foam support particles. Appl Microbiol Biotechnol 36:697–700
  87. Jensen AB, Webb C (1994) A trickle bed reactor for ferrous sulphate oxidation using Thiobacillus ferrooxidans. Biotechnol Tech 8:87–92
  88. Grishin SI, Tuovinen OH (1988) Fast kinetics of Fe oxidation in packed-bed reactors. Appl Environ Microbiol 54:3092–3100
  89. Long Z, Huang Y, Cai Z, Cong W, Ouyand F (2003) Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers. Biotechnol Lett 25:245–249
  90. Nemati M, Webb C (1996) Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 46:250–255
  91. Wood TA, Murray KR, Burgess JG (2001) Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine drainage. Appl Microbiol Biotechnol 56:560–565
  92. Mazuelos A, Carranza F, Palencia I, Romero R (2000) High efficiency reactor for biooxidation of ferrous iron. Hydrometallurgy 58:269–275
  93. Nakamura K, Noike T, Matsumoto J (1986) Effect of operation conditions on biological Fe oxidation with rotating biological contactors. Water Res 20:73–77
  94. Nikolov L, Mehochev D, Dimitrov D (1986) Continuous bacterial ferrous iron oxidation by Thiobacillus ferrooxidans in rotating biological contactors. Biotechnol Lett 8:707–710
  95. Kinnunen PH-M, Puhakka JA (2004) High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in fluidized-bed bioreactor. Biotechnol Bioeng 85:697–705
  96. Ginsburg MA, Penev K, Karamanev D (2009) Immobilization and ferrous iron biooxidation studies of a Leptospirillum sp. mixed-cell culture. Miner Eng 22:140–148
  97. Nurmi P, Özkaya B, Kaksonen AH, Tuovinen OH, Riekkola-Vanhanen M, Puhakka JA (2009) Process for biological oxidation and control of dissolved iron in bioleach liquors. Process Biochem 44:1315–1322
  98. Kaksonen AH, Morris C, Wylie J, Li J, Usher K, Hilario F, du Plessis CA (2017) Continuous flow 70 °C archaeal bioreactor for iron oxidation and jarosite precipitation. Hydrometallurgy 168:40–48
  99. Hammack RW, Edenborn HM, Dvorak DH (1994) Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: a feasibility study. Water Res 28:2321–2329
  100. Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E (2011) Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. J Hazard Mater 189:670–676
  101. Groudeva VI, Groudev SN, Petkova S (1996) Biological treatment of acid drainage waters from a copper mine. Miner Slovaca 28:318–320
  102. Harris MA, Ragusa S (2001) Bioremediation of acid mine drainage using decomposable plant material in a constant flow bioreactor. Environ Geol 40:1192–1204
  103. Estrada Rendon CM, Amara G, Leonard P, Tobin J, Roussy J, Degorce-Dumas JR (1999) Acid mine drainage (AMD) treatment by sulphate reducing bacteria. In: Amils, R. and Ballester, A. (eds.) Biohydrometallurgy and the environment toward the mining of the 21 century. Proceedings of the international biohydrometallurgy symposium IBS’99, San Lorenzo de El Escorial, Madrid, Spain, June 20–23. Part B: molecular biology, biosorption, bioremediation. Elsevier, Amsterdam. pp. 577–585
  104. Hammack RW, Dvorak DH, Edenborn HM (1994) Bench-scale test to selectively recover metals from metal mine drainage using biogenic HS. 3 international conference on the abatement of acidic drainage, Pittsburgh, PA, USA, April 24–29, 1994. pp. 214–222
  105. Kaksonen AH, Riekkola-Vanhanen M-L, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266
  106. Kaksonen AH, Franzmann PD, Puhakka JA (2003) Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation 14:207–217
  107. Kaksonen AH, Franzmann PD, Puhakka JA (2004) Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86:332–343
  108. Ucar D, Bekmezci OK, Kaksonen AH, Sahinkaya E (2011) Sequential precipitation of cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system. Miner Eng 24:1100–1105
  109. Sahinkaya E, Özkaya B, Kaksonen AH, Puhakka JA (2007) Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 C temperature is limited by acetate oxidation. Water Res 41:2706–2714
  110. Nevatalo LM, Mäkinen A, Kaksonen AH, Puhakka JA (2010) Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor. Bioresour Technol 101:276–284
  111. Auvinen H, Nevatalo LM, Kaksonen AH, Puhakka JA (2009) Low-temperature (9 °C) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic Desulfomicrobium species. Biotechnol Bioeng 104(4):740–751
  112. Lakaniemi A-M, Nevatalo LM, Kaksonen AH, Puhakka JA (2010) Mine wastewater treatment using Phalaris arundinaceae plant material hydrolysate as substrate for sulfate-reducing bioreactor. Bioresour Technol 101:3931–3939
  113. Bijmans MFM, van Helvoort P-J, Dar SA, Dopson M, Lens PNL, Buisman CJN (2009) Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor. Water Res 43:853–861
  114. Badjo Y, Mouchet P (1989) Appropriate technologies – example of a large biological iron removal plant in Togo. Aqua 38(3):197–206
  115. Søgaard EG, Medenwaldt R, Abraham-Peskir JV (2000) Conditions and rates of biotic and abiotic iron precipitation in selected Danish freshwater plants and microscopic analysis of precipitate morphology. Wat Res 34(10):2675–2682
  116. Morris T, Siviter CL (2001) Application of a biological iron removal process at grove water treatment works. J CIWEM 15:117–121
  117. Bourgine FP, Gennery M, Mieie CJI, Kerai H, Green JG, Mice RRJ, Ellis S, Gaumard C (1994) Biological processes at Saints Hill water treatment plant. Kent J IWEM 8(4):379–392
  118. Williams P (2002) Biological iron and manganese removal as a viable alternative for groundwater treatment. Environ Sci Eng Magazine. March. Accessed from: https://esemag.com/archives/biological-iron-and-manganese-removal-as-a-viable-alternative-for-groundwater-treatment/
  119. Tremblay CV, Beaubien A, Charles P, Nicell JA (1998) Control of biological iron removal from drinking water using oxidation-reduction potential. Wat Sci Technol 38(6):121–128
  120. Hedberg T, Wahlberg TA (1998) Upgrading of waterworks with a new bio-oxidation process for removal of manganese and iron. Wat Sci Technol 37(9):121–126
  121. Umita T (1996) Biological mine drainage treatment. Resour Conserv Recycl 16:179–188
  122. Hedin RS (2008) Iron removal by a passive system treating alkaline coal mine drainage. Mine Water Environ 27:200–209
  123. Jacob J, Joulian C, Battaglia-Brunet F (2022) Start-up and performance of a full scale passive system including biofilters for the treatment of Fe, as and Mn in a neutral mine drainage. Water 14:1963
  124. Kamimura K, Kanao T (2020) Development of effective biological treatment process for acid mine drainage. Sci Rep Facul Agric 109:29–36. Okayama University. https://ousar.lib.okayama-u.ac.jp/ja/57908
  125. Olem H, Unz RF (1980) Rotating-disc biological treatment of acid mine drainage. JWPCF 52:257–269
  126. Janneck E, Arnold I, Koch T, Meyer J, Burghardt D, Ehinger S (2010) Microbial synthesis of schwertmannite from lignite mine water and its utilization for removal of arsenic from mine waters and for production of iron pigments. In: Wolkersdorfer and Freud (eds) International Mine Water Association (IMWA) 2010. pp. 83–86
  127. Dvorak DH, Hedin RS, Edenborn HM, McIntire PE (1992) Treatment of metal-contaminated water using bacterial sulphate reduction: results from pilot-scale reactors. Biotechnol Bioeng 40:609–616
  128. de Vegt AL, Dijkman H, Buisman CJ (1998) Hydrogen sulfide produced from sulfate by biological reduction for use in metallurgical operations. In: Asteljoki JA, Stephens RL (eds) Proceedings of the sulfide smelting ‘98: current and future practices, San Antonio, Texas, USA, 16–19 February 1998. The Minerals, Metals & Materials Society, Warrandale, pp 463–471
  129. Boonstra J, van Lier R, Janssen G, Dijkman H, Buisman CJN (1999) Biological treatment of acid mine drainage. In: Amils, R. and Ballester, A. (eds.) Biohydrometallurgy and the environment toward the mining of the 21 century. Proceedings of the International Biohydrometallurgy Symposium IBS’99, San Lorenzo de El Escorial, Madrid, Spain, June 20–23. Part B: Molecular biology, biosorption, bioremediation. Elsevier, Amsterdam. pp. 559–567
  130. Hammack RW, Dijkman H (1999) The application of bacterial sulfate reduction treatment to severely contaminated mine waters: results of three years of pilot plant testing. In: Young SK, Dreisinger DB, Hackl RP, Dixon DG (eds) Proceedings of copper 99-Cobre 99 international conference, Phoenix, Arizona, USA, October 10–13, 1999. Hydrometallurgy of copper, vol IV. The Minerals, Metals & Materials Society, Warrandale, pp 97–111
  131. Rein NB, Fourie HJ, Gunther P, Nkosi F, Schultz CE (2005) Sustainable treatment of acid mine drainage at Anglo Coal’s Landau colliery, Witbank South Africa using Paques Thiopaq® technology. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16 international biohydrometallurgy symposium 25–29 September 2005, Cape Town, South Africa, pp 455–461
  132. Iwate Prefectural Government (1999) The neutralisation treatment facility. Available at https://www.pref.iwate.jp/kurashikankyou/kankyou/hozen/mizushigen/1025877/1025878/1025881.html
  133. Wakao N, Sakurai Y, Shiota H (1977) Microbial oxidation of ferrous iron in acid mine water at sulfur and iron-sulfide mine. Soil Sci Plant Nutr 23(2):207–216
  134. Smith FE (1994) A critique of Japanese acid mine drainage technology, MEND Report 6.3
  135. Hedin RS (2016) Long-term minimization of mine water treatment costs through passive treatment and production of a saleable iron oxide sludge. Proceedings IMWA conference Leipzig, p. 1267–1273
  136. Yabuuchi, Fukuda (1979) Process for oxidation treatment of Fe in waste water. United States patent No. US 4139456 and Canadian patent No. CA 1076721
  137. Hedin RS (1999) Recovery of iron oxides from polluted coal mine drainage. United States Patent No. 5954969
  138. Arnold I, Schlee K, Glombitza F, Janneck E, Karnatz F, Rechenberger B (2007) Verfahren zur Reinigung/Behandlung von sauren, Eisen- und sulfathaltigen Wässern. German Patent DE 102 21 756 B4
  139. Nurmi P, Kaksonen A, Puhakka J (2010) Process for extracting iron from an aqueous acid solution. World Patent WO2010043764-A1
  140. Janneck E, Peiffer S, Burghardt D, Simon E, Rostan M, Fischer H, Lambrecht J, Martin M, Glombitza F, Griebel I (2013) An adsorbent comprising schwertmannite, a method of preparing the adsorbent and the use of the adsorbent for purifying water or gas. European Patent: EP 2 664 376
  141. Zhou L, Wang X (2020) A method and biological treatment of acid mine wastewater while recovering iron ion. Chinese Patent No. CN 111620444 A
  142. Zhou L, Wang X (2021) Method and system for biologically treating acid mine wastewater while recovering iron ion. World Patent No. WO 2021/120364 A1
  143. Zhou L, Wang X (2021) A biological treatment of acid mine wastewater while recovering iron ion. Chinese Patent No. CN 111620444 B
  144. Yan S, Cheng KY, Ginig MP, Morris C, Deng X, Li J, Song S, Zheng G, Zhou L, Kaksonen AH (2022) Sequential removal of selenate, nitrate and sulfate and recovery of elemental selenium in a multi-stage bioreactor process with redox potential feedback control. J Hazard Mater 424:127539
  145. Hego Biotec GmbH (2023) Wirkstoffe für den Umweltschutz (Active substances for environmental protection). https://www.hego-biotec.de/ . Accessed 27 Aug 2023
  146. AquaMinerals BV (2023) Products: Ferric(hydr)oxide/Iron pellets and granulate. https://aquaminerals.com/iron-pellets/ . Accessed 27 Aug 2023
  147. Hedin RS (2003) Recovery of marketable iron oxide from mine drainage in the USA. Land Contam Reclam 11(2):93–97
  148. Iron Oxide Recovery Inc. (2008) EnvironOxide™ Iron oxide produced from coal mine drainage. http://www.environoxide.com/ . Accessed 27 Aug 2023
  149. Janneck E, Glombitza F, Terno D, Wolf M, Patzig A, Fischer H, Rätzel G, Herbach K-D (2008) Environmentally compatible biotechnological recovery of iron hydroxysulphate from acid mine water and its industrial utilization as a raw material for pottery, construction and pigments with the objective of cost reduction and saving of raw material resources – subproject 1: coordination, operation of pilot plant and recovery of iron hydroxysulphate. G.E.O.S. Freiberg Ingenieurgesellschaft mbH. Available at https://doi.org/10.2314/GBV:578804417
  150. Janneck E, Burghardt D, Simon E, Peiffer S, Paul M, Koch T (2015) Development of an adsorbent comprising schwertmannite and its utilization in mine water treatment. Proceedings 10 ICARD-IMWA 2015, p. 1058–1067
  151. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572
  152. Wu Z, Ji S, Li Y-Y, Liu J (2023) A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. Bioresour Technol 379:129037
  153. Menezes JCSS, Silva RA, Arce IS, Schneider IAH (2010) Production of a poly-alumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage. Miner Eng 23:249–251
  154. Rao SR, Gehr R, Rindeau M, Lu D, Finch JA (1992) Acid mine drainage as a coagulant. Miner Eng 5(9):1011–1020
  155. Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft bmH (LMBV) (2023) Umgang mit Eisenhydroxidschlamm in Bergbaufolgegebieten (Handling of iron hydroxide sludge in post-mining areas) https://www.lmbv.de/wp-content/uploads/2023/07/Broschuere-EHS_20230720_Web.pdf , Accessed 27 Aug 2023
  156. Kunze K, Blumenstein O (2023) Field trial of iron hydroxide sludge for revegetation and improved productivity of structurally weak soils. Proceedings IMWA conference Newport UK (in press)
  157. Chai L, Tang J, Liao Y, Yang Z, Liang L, Li Q, Wang H, Yang W (2016) Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil. J Soils Sediments 16:2430–2438
  158. Janneck E, Burghardt D, Martin M, Damian C, Schöne G, Meyer J, Peiffer S (2011) From waste to valuable substance: utilization of Schwertmannite and lignite filter ash for removal of arsenic and uranium from mine drainage. International Mine Water Association (IMWA), pp 359–364
  159. Miyata N, Takahashi A, Fujii T, Hashimoto H, Takada J (2018) Biosynthesis of schwertmannite and goethite in a bioreactor with acidophilic Fe(II)-oxidizing betaproteobacterium strain GJ-E10. Fortschr Mineral 8:98
  160. Reichel S, Janneck E, Burghardt D, Peiffer S, Kießig G, Koch T, Arnold I, Laubrich J (2017) Microbial production of schwertmannite: development from microbial fundamentals to marketable products. Solid State Phenom 262:568–572
  161. Schoepfer VA, Burton ED (2021) Schwertmannite: a review of its occurrence, formation, structure, stability and interactions with oxyanions. Earth Sci Rev 221:103811
  162. Simon E, Burghardt D, Richter J, Reichel S, Janneck E (2016) Removal of oxoanions from water: comparison of a novel Schwertmannite-adsorbent and an iron hydroxide adsorbent. IMWA, Freiberg, p 4
  163. Yang Z, Wu Z, Liao Y, Liao Q, Yang W, Chai L (2017) Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere 181:1–8
  164. Dou X, Mohan D, Pittman Jr CU (2013) Arsenate adsorption on three types of granular schwertmannite. Water Res 47:2938–2948
  165. Xie Y, Zhou L-X (2013) Arsenite removal from simulated groundwater by biogenic schwertmannite: a column trial. Pedosphere 23:402–408
  166. Zhang Z, Bi X, Li X, Zhao Q, Chen H (2018) Schwertmannite: occurrence, properties, synthesis and application in environmental remediation. RSC Adv 8:33583–33599
  167. Klug M, Janneck E, Reichel S, Peiffer S (2016) Treatment of chromate(VI) and vanadate(V) polluted wastewaters using schwertmannite adsorbents. In: Drebenstedt C, Paul M (eds) Mining meets water – conflicts and solutions. Proceedings IMWA 2016 Leipzig, Germany. TU Bergakademie Freiberg, pp 1012–1014
  168. Wei X, Viadero RC (2007) Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: implications for environmental engineering. Colloids Surf A Physicochem Eng Asp 294:280–286
  169. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021
  170. Marcello RR, Galato S, Peterson M, Riella HG, Bernardin AM (2008) Inorganic pigments made from the recycling of coal mine drainage treatment sludge. J Environ Manag 88:1280–1284

Word Cloud

Created with Highcharts 10.0.0ironremovalIronwastewatercanwaterproducefacilitaterecoveryprecipitationBiologicalRecoveryWaterWastewatercommoncontaminantsourceminingmetallurgicalindustriesparticulardischargelargequantitieshighconcentrationsDueharmfuleffectsorganismsinfrastructureefficienttechnologiesneededhandvaluablecommoditywiderangeapplicationsMicroorganismsaerobicanaerobicprocessescommonlyutilizedmicrobesincludeoxidizersjarositesschwertmanniteferrihydritegoethitescoroditesulfatereducershydrogensulfideprecipitatessulfidesexploredvarioussuspendedcellbiofilm-basedbioreactorsconfiguredparallelseriesintegratedsettlingunitseffectiveflowsheetchapterreviewsprinciplesbiologicalmicroorganismsinvolvedreactortypespatentsexampleslaboratory-pilot-scalestudiesfull-scaleimplementationstechnologyRemovalBiooxidationBioprecipitation

Similar Articles

Cited By