Compressibility characteristics of municipal solid waste considering multiple factors.

Yangfan Lou, Zhenying Zhang, Tuo Li, Youwen Zhang, Wenjie Chen
Author Information
  1. Yangfan Lou: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
  2. Zhenying Zhang: School of Engineering Science, Shandong Xiehe University, Jinan, 250109, China. zhangzhenyinga@163.com. ORCID
  3. Tuo Li: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
  4. Youwen Zhang: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
  5. Wenjie Chen: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Abstract

Borehole samples were collected from a municipal solid waste (MSW) landfill in Xi'an, China, and subjected to a series of basic geotechnical and compression tests. This study aims to investigate the influence of composition, dry unit weight, moisture content, organic content, and landfill age on the compressibility of MSW. The results show that with increasing landfill age, the compressible components and organic content exhibit a decreasing trend while the dry unit weight increases. The moisture content does not vary significantly. There is also a linear trend between the logarithm of the primary compression strain and vertical stress. In addition, with an increase in compressible components content, moisture content, and organic content, the modified primary compression index (Cc') shows an increasing trend, whereas with an increase in dry unit weight and landfill age, Cc' shows a decreasing trend. Furthermore, regarding the 34 sets of data, authors only selected five data points for a detailed comparative analysis, this decision was made on the basis that these data points are representative. A modified primary compression index prediction model that considers the dry unit weight, moisture content, and landfill age of the MSW as influencing factors results in a fitting coefficient of 0.797. The Cc' values in this study are within the range of 0.12 to 0.36. These findings provide a reference for the vertical expansion design of existing landfills.

Keywords

References

  1. Abualigah L, Diabat A (2021) Advances in sine cosine algorithm: a comprehensive survey. Artif Intell Rev 54(4):2567���2608. https://doi.org/10.1007/s10462-020-09909-3 [DOI: 10.1007/s10462-020-09909-3]
  2. Bae W, Kwon Y (2017) Consolidation settlement properties of seashore landfills for municipal solid wastes in Korea. Mar Georesour Geotechnol 35(2):216���225. https://doi.org/10.1080/1064119X.2015.1133743 [DOI: 10.1080/1064119X.2015.1133743]
  3. Bareither CA, Benson CH, Edil TB (2012) Compression behavior of municipal solid waste: immediate compression. J Geotech Geoenviron Eng 138(9):1047���1062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000672 [DOI: 10.1061/(ASCE)GT.1943-5606.0000672]
  4. Basha BM, Parakalla N, Reddy KR (2016) Experimental and statistical evaluation of compressibility of fresh and landfilled municipal solid waste under elevated moisture contents. Int J Geotech Eng 10(1):86���98. https://doi.org/10.1179/1939787915Y.0000000018 [DOI: 10.1179/1939787915Y.0000000018]
  5. Castelli F, Maugeri M (2014) Mechanical properties of municipal solid waste by SDMT. Waste Manag 34(2):256���265. https://doi.org/10.1016/j.wasman.2013.10.026 [DOI: 10.1016/j.wasman.2013.10.026]
  6. Chen YM, Zhan LT, Wei HY, Ke H (2009) Aging and compressibility of municipal solid wastes. Waste Manag 29(1):86���95. https://doi.org/10.1016/j.wasman.2008.02.024 [DOI: 10.1016/j.wasman.2008.02.024]
  7. Chen RH, Chen KS, Liu CN (2010) Study of the mechanical compression behavior of municipal solid waste by temperature-controlled compression tests. Environ Earth Sci 61(8):1677���1690. https://doi.org/10.1007/s12665-010-0481-y [DOI: 10.1007/s12665-010-0481-y]
  8. Chen YM, Xu WJ, Zhan LT, Ke H, Hu J, Li H, Ma PC, Li JC (2021) Geoenvironmental issues in high-food-waste-content municipal solid waste landfills. J Indian Inst Sci 101(4):603���623. https://doi.org/10.1007/s41745-021-00233-5 [DOI: 10.1007/s41745-021-00233-5]
  9. Chen YM, Zhan LT, Gao W (2018) Waste mechanics and sustainable landfilling technology: comparison between HFWC and LFWC MSWs. The International Congress on Environmental Geotechnics, Singapore, pp 3���37. https://doi.org/10.1007/978-981-13-2221-1_1
  10. Dixon N, Langer U (2006) Development of a MSW classification system for the evaluation of mechanical properties. Waste Manag 26(3):220���232. https://doi.org/10.1016/j.wasman.2005.02.018 [DOI: 10.1016/j.wasman.2005.02.018]
  11. Dixon N, Langer U, Gotteland P (2008) Classification and Mechanical Behavior Relationships for Municipal Solid Waste: Study Using Synthetic Waste. J Geotech Geoenviron Eng 134(1):79���90. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(79) [DOI: 10.1061/(ASCE)1090-0241(2008)134]
  12. Durmusoglu E, Sanchez IM, Corapcioglu MY (2006) Permeability and compression characteristics of municipal solid waste samples. Environ Geol 50(6):773���786. https://doi.org/10.1007/s00254-006-0249-6 [DOI: 10.1007/s00254-006-0249-6]
  13. Feng SJ, Gao KW, Chen YX, Li Y, Zhang LM, Chen HX (2017) Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manag 63:354���365. https://doi.org/10.1016/j.wasman.2016.09.016 [DOI: 10.1016/j.wasman.2016.09.016]
  14. Gomes CC, Lopes ML, Oliveira PJV (2014) Stiffness parameters of municipal solid waste. Bull Eng Geol Environ 73(4):1073���1087. https://doi.org/10.1007/s10064-014-0621-9 [DOI: 10.1007/s10064-014-0621-9]
  15. Hadinata F, Damanhuri E, Rahardyan B, Widyarsana IMW (2018) Identification of initial settlement of municipal solid waste layers in Indonesian landfill. Waste Manag Res 36(8):737���743. https://doi.org/10.1177/0734242X18788149 [DOI: 10.1177/0734242X18788149]
  16. He HJ, Wu T, Wang XG, Qiu ZH, Lan JW (2021) Study on compressibility and settlement of a landfill with aged municipal solid waste: a case study in Taizhou. Sustainability 13(9):4831. https://doi.org/10.3390/su13094831 [DOI: 10.3390/su13094831]
  17. Hossain MS, Gabr MA, Barlaz MA (2003) Relationship of compressibility parameters to municipal solid waste decomposition. J Geotech Geoenviron Eng 129(12):1151���1158. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1151) [DOI: 10.1061/(ASCE)1090-0241(2003)129]
  18. Jo YS, Jang YS (2021) Comparison of waste settlement characteristics for two landfills disposed in long sequential periods. Waste Manag 131:433���442. https://doi.org/10.1016/j.wasman.2021.07.003 [DOI: 10.1016/j.wasman.2021.07.003]
  19. Karimpour-Fard M, Machado SL (2012) Deformation characteristics of MSW materials. Electron J Geotech Eng 17(A):2009���2024
  20. Ke H, Liu JL, Chen YM, Zhan LT, Xu XB (2010) Biodegradation-compression tests on municipal solid waste subjected to different vertical pressures. Chin J Geotech Eng 32:1610���1615 ((In Chinese))
  21. Khaleghi M, Karimpour-Fard M, Heshmati AA (2023) Thermo-hydro-mechanical response of MSW in a modified large oedometer apparatus. Int J Geomech 23(3):04022310. https://doi.org/10.1061/IJGNAI.GMENG-7997 [DOI: 10.1061/IJGNAI.GMENG-7997]
  22. Khaleghi M, Heshmati AA, Karimpour-Fard M (2024) Thermal effects on the compressibility and permeability of municipal solid waste landfills. Int J Environ Sci Technol 21(1):73���90. https://doi.org/10.1007/s13762-023-05180-5 [DOI: 10.1007/s13762-023-05180-5]
  23. Landva AO, Valsangkar AJ, Pelkey SG (2000) Lateral earth pressure at rest and compressibility of municipal solid waste. Can Geotech J 37(6):1157���1165. https://doi.org/10.1139/t00-057 [DOI: 10.1139/t00-057]
  24. Liao ZQ, Shi JY, Mao J (2007) Experimental study and mechanism analysis of primary compression index of MSW. J Hohai Univ 35(3):326���329 ((In Chinese))
  25. Liu R, Shi JY, Peng GX (2003) Study on the deformation characteristic ofinteriorrefuse test. J Yangzhou Univ 6(2):51���55 ((In Chinese))
  26. Machado SL, Carvalho MF, Vilar OM (2002) Constitutive model for municipal solid waste. J Geotech Geoenviron Eng 128(11):940���951. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940) [DOI: 10.1061/(ASCE)1090-0241(2002)128]
  27. Mokhtari M, Heshmati RAA, Shariatmadari N (2019) The effect of aging on the compressibility behavior and the physical properties of municipal solid wastes: a case study of Kahrizak landfill, Tehran. Environ Earth Sci 78(16):1���14. https://doi.org/10.1007/s12665-019-8523-6 [DOI: 10.1007/s12665-019-8523-6]
  28. Portelinha FHM, Correia NS, Daciolo LVP (2020) Impact of temperature on immediate and secondary compression of MSW with high and low food contents. Waste Manag 118:258���269. https://doi.org/10.1016/j.wasman.2020.08.044 [DOI: 10.1016/j.wasman.2020.08.044]
  29. Powrie W, Xu XB, Richards D, Zhan LT, Chen YM (2019) Mechanisms of settlement in municipal solid waste landfills. J Zhejiang Univ (Eng Sci) A 20(12):927���947. https://doi.org/10.1631/jzus.A1900315 [DOI: 10.1631/jzus.A1900315]
  30. Priyankara NH, Fernando K, Alagiyawanna AMN (2022) Compressibility Characteristics of Open Dumped Municipal Solid Waste in the Dry Zone of Sri Lanka. Engineer 55(3):11���20. https://doi.org/10.4038/engineer.v55i3.7517 [DOI: 10.4038/engineer.v55i3.7517]
  31. Pulat HF, Yukselen-Aksoy Y (2019) Compressibility and shear strength behaviour of fresh and aged municipal solid wastes. Environ Geotech 9(1):55���63. https://doi.org/10.1680/jenge.18.00019 [DOI: 10.1680/jenge.18.00019]
  32. Ramaiah BJ, Ramana GV, Datta M (2017) Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Manag 68:275���291. https://doi.org/10.1016/j.wasman.2017.05.055 [DOI: 10.1016/j.wasman.2017.05.055]
  33. Rana R, Ganguly R, Gupta AK (2017) Evaluation of solid waste management in satellite Towns of Mohali and Panchkula-India. J Solid Waste Techol Manag 43(4):280���294. https://doi.org/10.5276/JSWTM.2017.280 [DOI: 10.5276/JSWTM.2017.280]
  34. Rana R, Ganguly R, Gupta AK (2018) Physico-chemical characterization of municipal solid waste from Tricity region of Northern India: a case study. J Mater Cycles Waste Manag 20:678���689. https://doi.org/10.1007/s10163-017-0615-3 [DOI: 10.1007/s10163-017-0615-3]
  35. Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulasi J, Bogner JE (2009a) Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manag 29(2):952���959. https://doi.org/10.1016/j.wasman.2008.05.011 [DOI: 10.1016/j.wasman.2008.05.011]
  36. Reddy KR, Gangathulasi J, Parakalla NS, Hettiarachchi H, Bogner JE, Lagier T (2009b) Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations. Waste Manag Res 27(6):578���587. https://doi.org/10.1177/0734242X09103825 [DOI: 10.1177/0734242X09103825]
  37. Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE, Lagier T (2009c) Geotechnical properties of synthetic municipal solid waste. Int J Geotech Eng 3(3):429���438. https://doi.org/10.3328/IJGE.2009.03.03.429-438 [DOI: 10.3328/IJGE.2009.03.03.429-438]
  38. Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE (2011) Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manag 31(11): 2275���2286. https://doi.org/10.1016/j.wasman.2011.06.002
  39. Shariatmadari N, Sadeghpour AH, Mokhtari M (2015) Aging effect on physical properties of municipal solid waste at the Kahrizak Landfill, Iran. Int J Civ Eng 13(1):126���136. https://doi.org/10.22068/IJCE.13.1.126 [DOI: 10.22068/IJCE.13.1.126]
  40. Sim��es GF, Catapreta CAA (2013) Monitoring and modeling of long-term settlements of an experimental landfill in Brazil. Waste Manag 33(2):420���430. https://doi.org/10.1016/j.wasman.2012.10.001 [DOI: 10.1016/j.wasman.2012.10.001]
  41. Sowers GF (1973) Settlement of waste disposal fills. In: Proceeding of eighth international conference on soil mechanics and foundation engineering. Moscow, pp 207���210. https://doi.org/10.1016/0148-9062(75)90051-0
  42. Stoltz G, Gourc JP, Oxarango L (2010) Characterisation of the physico-mechanical parameters of MSW. Waste Manag 30(8):1439���1449. https://doi.org/10.1016/j.wasman.2010.03.016 [DOI: 10.1016/j.wasman.2010.03.016]
  43. Swati M, Joseph K (2008) Settlement analysis of fresh and partially stabilised municipal solid waste in simulated controlled dumps and bioreactor landfills. Waste Manag 28(8):1355���1363. https://doi.org/10.1016/j.wasman.2007.06.011 [DOI: 10.1016/j.wasman.2007.06.011]
  44. Technical Specification for Soil Test of Landfilled Municipal Solid Waste CJJ/T204���2013, (2013) China Architecture and Building Press, Beijing (In Chinese). https://www.doc88.com/p-7384983067919.html
  45. Thakur D, Gupta AK, Ganguly R (2020) Laboratory analysis and prediction of settlement of municipal solid waste under anaerobic condition. J Inst Eng India Ser A 101:455���462. https://doi.org/10.1007/s40030-020-00456-2 [DOI: 10.1007/s40030-020-00456-2]
  46. Thakur D, Ganguly R, Gupta AK (2022) Effect of degradation of municipal solid waste on the shear strength behavior from a dump site in Una Town, Himachal Pradesh. J Solid Waste Techol Manag 48(1):147���160. https://doi.org/10.5276/JSWTM/2022.147 [DOI: 10.5276/JSWTM/2022.147]
  47. Vilar OM, Carvalhod MF (2004) Mechanical properties of municipal solid waste. J Test Eval 32(6):438���449. https://doi.org/10.1520/JTE11945 [DOI: 10.1520/JTE11945]
  48. Wall DK, Zeiss C (1995) Municipal landfill biodegradation and settlement. J Environ Eng 121(3):214���224. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:3(214) [DOI: 10.1061/(ASCE)0733-9372(1995)121]
  49. Xie Y, Xue J, Gnanendran CT, Xie K (2022) Geotechnical properties of fresh municipal solid wastes with different compositions under leachate exposure. Waste Manag 149:207���217. https://doi.org/10.1016/j.wasman.2022.06.020 [DOI: 10.1016/j.wasman.2022.06.020]
  50. Xu XB, Zhan LT, Chen YM, Guo QG (2015) Parameter determination of a compression model for landfilled municipal solid waste: an experimental study. Waste Manag Res 33(2):199���210. https://doi.org/10.1177/0734242X14565657 [DOI: 10.1177/0734242X14565657]
  51. Xu H, Zhu G, Zhang ZY, Zhan LT, Chen YM (2019) Experimental study on the primary compression behavior of municipal solid waste and a model of modified primary compression index. Chin J Rock Mech Eng 38(6):1270���1283 ((In Chinese))
  52. Xu H, Wang JN, Zhan LT, Zhang ZY, Xu XB, Chen YM, Yao K (2020) Characterization of compression behaviors of high food waste content (HFWC) MSW and no food waste content (NFWC) MSW in China. Waste Manag 103:305���313. https://doi.org/10.1016/j.wasman.2019.12.036 [DOI: 10.1016/j.wasman.2019.12.036]
  53. Yazdanpour B, Karimpour-Fard M, Sabermahani M (2024) Compression behavior of municipal solid waste in temperature-controlled isotropic condition. Geotech Test J 47(2). https://doi.org/10.1520/GTJ20230354
  54. Zekkos D, Bray JD, Kavazanjian E Jr, Matasovic N, Rathje EM, Riemer MF, Stokoe KH (2006) Unit weight of municipal solid waste. J Geotech Geoenviron Eng 132(10):1250���1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250) [DOI: 10.1061/(ASCE)1090-0241(2006)132]
  55. Zekkos D, Fei X, Grizi A, Athanasopoulos GA (2017) Response of municipal solid waste to mechanical compression. J Geotech Geoenviron Eng 143(3):04016101. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001608 [DOI: 10.1061/(ASCE)GT.1943-5606.0001608]
  56. Zhan LT, Chen YM, Ling WA (2008) Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Eng Geol 97(3���4):97���111. https://doi.org/10.1016/j.enggeo.2007.11.006 [DOI: 10.1016/j.enggeo.2007.11.006]
  57. Zhu XR, Jin JM, Fang PF (2003) Geotechnical behavior of the MSW in Tianziling landfill. J Zhejiang Univ (eng Sci) 4(3):324���330 ((In Chinese)) [DOI: 10.1631/jzus.2003.0324]

Grants

  1. 51978625/National Natural Science Foundation of China
  2. 51678532/National Natural Science Foundation of China
  3. LZ21E080003/Natural Science Foundation of Zhejiang Province

MeSH Term

Solid Waste
China
Refuse Disposal
Waste Disposal Facilities

Chemicals

Solid Waste

Word Cloud

Created with Highcharts 10.0.0contentlandfillcompressionunitweightagedrymoisturetrendprimarysolidwasteMSWorganicindexCc'data0municipalstudyresultsincreasingcompressiblecomponentsdecreasingverticalincreasemodifiedshowspointspredictionmodelfactorsBoreholesamplescollectedXi'anChinasubjectedseriesbasicgeotechnicaltestsaimsinvestigateinfluencecompositioncompressibilityshowexhibitincreasesvarysignificantlyalsolinearlogarithmstrainstressadditionwhereasFurthermoreregarding34setsauthorsselectedfivedetailedcomparativeanalysisdecisionmadebasisrepresentativeconsidersinfluencingfittingcoefficient797valueswithinrange1236findingsprovidereferenceexpansiondesignexistinglandfillsCompressibilitycharacteristicsconsideringmultipleCompressiontestDryLandfillModifiedMoistureMunicipal

Similar Articles

Cited By