Gradient synchronization for multivariate functional data, with application to brain connectivity.

Yaqing Chen, Shu-Chin Lin, Yang Zhou, Owen Carmichael, Hans-Georg Müller, Jane-Ling Wang
Author Information
  1. Yaqing Chen: Department of Statistics, Rutgers University, New Brunswick, New Jersey, USA. ORCID
  2. Shu-Chin Lin: Department of Statistics, University of California, Davis, Davis, California, USA.
  3. Yang Zhou: Department of Statistics, University of California, Davis, Davis, California, USA.
  4. Owen Carmichael: Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA. ORCID
  5. Hans-Georg Müller: Department of Statistics, University of California, Davis, Davis, California, USA.
  6. Jane-Ling Wang: Department of Statistics, University of California, Davis, Davis, California, USA. ORCID

Abstract

Quantifying the association between components of multivariate random curves is of general interest and is a ubiquitous and basic problem that can be addressed with functional data analysis. An important application is the problem of assessing functional connectivity based on functional magnetic resonance imaging (fMRI), where one aims to determine the similarity of fMRI time courses that are recorded on anatomically separated brain regions. In the functional brain connectivity literature, the static temporal Pearson correlation has been the prevailing measure for functional connectivity. However, recent research has revealed temporally changing patterns of functional connectivity, leading to the study of dynamic functional connectivity. This motivates new similarity measures for pairs of random curves that reflect the dynamic features of functional similarity. Specifically, we introduce gradient synchronization measures in a general setting. These similarity measures are based on the concordance and discordance of the gradients between paired smooth random functions. Asymptotic normality of the proposed estimates is obtained under regularity conditions. We illustrate the proposed synchronization measures via simulations and an application to resting-state fMRI signals from the Alzheimer's Disease Neuroimaging Initiative and they are found to improve discrimination between subjects with different disease status.

Keywords

References

  1. Neuron. 2010 Feb 25;65(4):550-62 [PMID: 20188659]
  2. J Cogn Neurosci. 1997 Fall;9(5):648-63 [PMID: 23965122]
  3. Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 [PMID: 20471808]
  4. Neuroimage. 2007 Mar;35(1):83-8 [PMID: 17240167]
  5. J Am Stat Assoc. 2014 Jul;109(507):1084-1098 [PMID: 25435598]
  6. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):937-46 [PMID: 16087438]
  7. Neuroimage. 2014 Nov 1;101:531-46 [PMID: 24993894]
  8. Neuroimage. 2017 Sep;158:155-175 [PMID: 28687517]
  9. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 [PMID: 11209064]
  10. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6 [PMID: 22323591]
  11. Ann Nucl Med. 2001 Apr;15(2):85-92 [PMID: 11448080]
  12. Neuroimage. 2004 Feb;21(2):647-58 [PMID: 14980567]
  13. Neuroimage. 2006 Aug 1;32(1):228-37 [PMID: 16777436]
  14. Brain Res Bull. 2001 Feb;54(3):287-98 [PMID: 11287133]
  15. Neuroimage. 2008 Aug 15;42(2):649-62 [PMID: 18565765]
  16. J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 [PMID: 8417010]
  17. Kidney Int. 2000 Jul;58(1):346-52 [PMID: 10886581]
  18. Brain. 2002 Aug;125(Pt 8):1772-81 [PMID: 12135968]
  19. Front Comput Neurosci. 2015 Feb 20;9:22 [PMID: 25750621]
  20. Neuroimage. 2012 Aug 15;62(2):938-44 [PMID: 22326802]
  21. Imaging Neurosci (Camb). 2023;1:1-23 [PMID: 38770197]
  22. J Neurosci. 2009 Feb 11;29(6):1860-73 [PMID: 19211893]
  23. Neuroimage. 2010 Mar;50(1):81-98 [PMID: 20006716]
  24. Front Comput Neurosci. 2013 Oct 30;7:143 [PMID: 24198781]
  25. Psychol Bull. 1979 Mar;86(2):420-8 [PMID: 18839484]
  26. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  27. Neuroimage. 2016 Feb 15;127:242-256 [PMID: 26631813]
  28. Front Neuroinform. 2010 Nov 16;4:115 [PMID: 21151357]
  29. Hum Brain Mapp. 2006 Mar;27(3):267-76 [PMID: 16092131]
  30. PLoS One. 2013 Nov 06;8(11):e77089 [PMID: 24223118]
  31. IEEE Trans Med Imaging. 2015 Apr;34(4):846-60 [PMID: 25252277]
  32. Neuroimage. 2012 Jul 16;61(4):907-20 [PMID: 22484408]
  33. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  34. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  35. Magn Reson Imaging. 2006 May;24(4):401-9 [PMID: 16677946]
  36. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 [PMID: 15070770]
  37. Neuroimage. 2017 Jul 15;155:406-421 [PMID: 28259780]
  38. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  39. Cereb Cortex. 2009 Oct;19(10):2209-29 [PMID: 19221144]
  40. Neuroimage. 2013 Oct 15;80:360-78 [PMID: 23707587]

Word Cloud

Created with Highcharts 10.0.0functionalconnectivityfMRIsimilaritymeasuresrandomdataapplicationbrainsynchronizationmultivariatecurvesgeneralproblemanalysisbasedPearsoncorrelationdynamicconcordanceproposeddiseaseQuantifyingassociationcomponentsinterestubiquitousbasiccanaddressedimportantassessingmagneticresonanceimagingoneaimsdeterminetimecoursesrecordedanatomicallyseparatedregionsliteraturestatictemporalprevailingmeasureHoweverrecentresearchrevealedtemporallychangingpatternsleadingstudymotivatesnewpairsreflectfeaturesSpecificallyintroducegradientsettingdiscordancegradientspairedsmoothfunctionsAsymptoticnormalityestimatesobtainedregularityconditionsillustrateviasimulationsresting-statesignalsAlzheimer'sDiseaseNeuroimagingInitiativefoundimprovediscriminationsubjectsdifferentstatusGradientAlzheimer’s

Similar Articles

Cited By (1)