Defining fitness in evolutionary ecology.

Susana M Wadgymar, Seema Sheth, Emily Josephs, Megan DeMarche, Jill Anderson
Author Information
  1. Susana M Wadgymar: Biology Department, Davidson College.
  2. Seema Sheth: Department of Plant and Microbial Biology, North Carolina State University.
  3. Emily Josephs: Department of Plant Biology, Michigan State University.
  4. Megan DeMarche: Department of Plant Biology, University of Georgia.
  5. Jill Anderson: Department of Genetics & Odum School of Ecology, University of Georgia.

Abstract

An understanding of biological fitness is central to theory and practice in ecology and evolution, yet fitness remains an elusive concept to define and challenging to measure accurately. Fitness reflects an individual's ability to pass its alleles on to subsequent generations. Researchers often quantify proxies for fitness, such as survival, growth or reproductive success. However, it can be difficult to determine lifetime fitness, especially for species with long lifespans. The abiotic and biotic environment strongly affects the expression of fitness, which means that fitness components can vary through both space and time. This spatial and temporal heterogeneity results in the impressive range of adaptations that we see in nature. Here, we review definitions of fitness and approaches to measuring fitness at the level of genes, individuals, genotypes, and populations and highlight that fitness is a key concept linking ecological and evolutionary thought.

Keywords

References

  1. Evol Lett. 2017 May 03;1(1):26-39 [PMID: 30283636]
  2. Nature. 2019 Sep;573(7772):126-129 [PMID: 31462776]
  3. Annu Rev Ecol Evol Syst. 2022 Nov;53(1):87-111 [PMID: 37790997]
  4. PLoS One. 2008;3(12):e4010 [PMID: 19104660]
  5. Evol Lett. 2022 May 27;6(4):308-318 [PMID: 35937470]
  6. J Anim Ecol. 2013 May;82(3):562-71 [PMID: 23228197]
  7. Am Nat. 2009 May;173(5):579-88 [PMID: 19272016]
  8. Proc Biol Sci. 2010 Oct 7;277(1696):2945-50 [PMID: 20462906]
  9. Evolution. 2015 Jul;69(7):1713-27 [PMID: 26082096]
  10. Proc Biol Sci. 2021 Oct 27;288(1961):20211812 [PMID: 34702075]
  11. Q Rev Biol. 1976 Mar;51(1):3-47 [PMID: 778893]
  12. Evolution. 2007 Dec;61(12):2925-41 [PMID: 17924954]
  13. Evolution. 1999 Dec;53(6):1744-1756 [PMID: 28565448]
  14. Nat Rev Genet. 2007 Nov;8(11):845-56 [PMID: 17943192]
  15. PLoS One. 2018 Feb 15;13(2):e0192777 [PMID: 29447207]
  16. Am J Bot. 2014 Oct;101(10):1588-96 [PMID: 25326608]
  17. Evolution. 1999 Aug;53(4):1093-1104 [PMID: 28565524]
  18. Am Nat. 2003 Dec;162(6):796-810 [PMID: 14737716]
  19. PLoS One. 2013;8(1):e52733 [PMID: 23320077]
  20. Am Nat. 2022 Jul;200(1):17-31 [PMID: 35737994]
  21. Am Nat. 2019 Oct;194(4):495-515 [PMID: 31490718]
  22. Am Nat. 2008 Jul;172(1):E35-47 [PMID: 18500940]
  23. Evol Lett. 2019 Apr 25;3(3):271-285 [PMID: 31171983]
  24. Evolution. 2006 Dec;60(12):2466-77 [PMID: 17263109]
  25. Evolution. 2019 Mar;73(3):497-510 [PMID: 30411338]
  26. Am Nat. 2021 Apr;197(4):434-447 [PMID: 33755534]
  27. Trends Ecol Evol. 2014 Sep;29(9):521-30 [PMID: 25038023]
  28. New Phytol. 2017 Mar;213(4):1618-1624 [PMID: 27864957]
  29. New Phytol. 2017 Apr;214(1):21-33 [PMID: 28211582]
  30. Proc Biol Sci. 2011 Nov 22;278(1723):3329-35 [PMID: 21429923]
  31. Science. 2011 Oct 7;334(6052):86-9 [PMID: 21980109]
  32. Int J Plant Sci. 2010 Nov;171(9):945-959 [PMID: 25089083]
  33. Am Nat. 2007 Feb;169(2):184-94 [PMID: 17211803]
  34. Evolution. 2008 Jul;62(7):1751-1763 [PMID: 18419752]
  35. BMC Evol Biol. 2013 Nov 02;13:239 [PMID: 24180692]
  36. Evolution. 1995 Feb;49(1):201-207 [PMID: 28593677]
  37. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18202-7 [PMID: 24145439]
  38. Evolution. 2001 Dec;55(12):2611-4 [PMID: 11831674]
  39. Monogr Popul Biol. 1982;17:1-296 [PMID: 7162524]
  40. Mol Ecol. 2023 Aug;32(16):4570-4583 [PMID: 37317048]

Grants

  1. R35 GM142829/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0fitnessecologyconceptgrowthcanevolutionaryrateunderstandingbiologicalcentraltheorypracticeevolutionyetremainselusivedefinechallengingmeasureaccuratelyFitnessreflectsindividual'sabilitypassallelessubsequentgenerationsResearchersoftenquantifyproxiessurvivalreproductivesuccessHoweverdifficultdeterminelifetimeespeciallyspecieslonglifespansabioticbioticenvironmentstronglyaffectsexpressionmeanscomponentsvaryspacetimespatialtemporalheterogeneityresultsimpressiverangeadaptationsseenaturereviewdefinitionsapproachesmeasuringlevelgenesindividualsgenotypespopulationshighlightkeylinkingecologicalthoughtDefiningcomponentlifehistorypopulationselectioncoefficienttrade-offvital

Similar Articles

Cited By (2)