A combined MRI, histological and immunohistochemical rendering of the rhesus macaque locus coeruleus (LC) enables the differentiation of three distinct LC subcompartments.

Irina T Sinakevitch, Kelsey E McDermott, Daniel T Gray, Carol A Barnes
Author Information
  1. Irina T Sinakevitch: Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States. Electronic address: irinats@arizona.edu.
  2. Kelsey E McDermott: Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States. Electronic address: kelseymcdermott@arizona.edu.
  3. Daniel T Gray: Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States. Electronic address: DTGray@mednet.ucla.edu.
  4. Carol A Barnes: Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States; Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States. Electronic address: carol@nsma.arizona.edu.

Abstract

Locus coeruleus (LC) neurons send their noradrenergic axons across multiple brain regions, including neocortex, subcortical regions, and spinal cord. Many aspects of cognition are known to be dependent on the noradrenergic system, and it has been suggested that dysfunction in this system may play central roles in cognitive decline associated with both normative aging and neurodegenerative disease. While basic anatomical and biochemical features of the LC have been examined in many species, detailed characterizations of the structure and function of the LC across the lifespan are not currently available. This includes the rhesus macaque, which is an important model of human brain function because of their striking similarities in brain architecture and behavioral capacities. In the present study, we describe a method to combine structural MRI, Nissl, and immunofluorescent histology from individual monkeys to reconstruct, in 3 dimensions, the entire macaque LC nucleus. Using these combined methods, a standardized volume of the LC was determined, and high-resolution confocal images of tyrosine hydroxylase-positive neurons were mapped into this volume. This detailed representation of the LC allows definitions to be proposed for three distinct subnuclei, including a medial region and a lateral region (based on location with respect to the central gray, inside or outside, respectively), and a compact region (defined by densely packed neurons within the medial compartment). This enabled the volume to be estimated and cell density to be calculated independently in each LC subnucleus for the first time. This combination of methods should allow precise characterization of the LC and has the potential to do the same for other nuclei with distinct molecular features.

Keywords

References

  1. Sleep Med. 2005 Jun;6 Suppl 1:S3-7 [PMID: 16140243]
  2. Brain Res Brain Res Rev. 2003 Apr;42(1):33-84 [PMID: 12668290]
  3. J Comp Neurol. 2010 Apr 1;518(7):963-71 [PMID: 20127761]
  4. Brain. 2021 Sep 4;144(8):2243-2256 [PMID: 33725122]
  5. Neurology. 2023 Jan 17;100(3):132-137 [PMID: 36646470]
  6. Brain Res Bull. 1982 Jul-Dec;9(1-6):255-70 [PMID: 7172030]
  7. Neuropsychopharmacology. 2022 Apr;47(5):1128-1136 [PMID: 35177805]
  8. Brain Sci. 2021 Nov 10;11(11): [PMID: 34827485]
  9. Anat Rec (Hoboken). 2022 Jun;305(6):1476-1499 [PMID: 34605227]
  10. J Comp Neurol. 1975 Feb 1;159(3):289-304 [PMID: 1112914]
  11. J Comp Neurol. 1975 May 1;161(1):19-29 [PMID: 48520]
  12. Surg Radiol Anat. 2012 Dec;34(10):879-85 [PMID: 22638719]
  13. Front Neuroanat. 2019 Jul 18;13:73 [PMID: 31379520]
  14. Nat Commun. 2020 Apr 6;11(1):1712 [PMID: 32249849]
  15. Nat Rev Neurosci. 2020 Nov;21(11):644-659 [PMID: 32943779]
  16. Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26247-26254 [PMID: 31871147]
  17. Brain Res Bull. 1983 Feb;10(2):171-284 [PMID: 6839182]
  18. Brain Connect. 2022 Apr;12(3):223-233 [PMID: 34139886]
  19. J Comp Neurol. 1981 Apr 10;197(3):369-83 [PMID: 7217371]
  20. Alzheimers Dement. 2017 Mar;13(3):236-246 [PMID: 27513978]
  21. Neuroimage. 2015 Jun;113:235-45 [PMID: 25791783]
  22. Geriatr Gerontol Int. 2015 Mar;15(3):334-40 [PMID: 24661561]
  23. Neuroscience. 1977;2(3):441-5 [PMID: 408733]
  24. Nat Rev Neurosci. 2004 Nov;5(11):863-73 [PMID: 15496864]
  25. Physiol Rev. 1983 Jul;63(3):844-914 [PMID: 6308694]
  26. J Neurosci. 1988 May;8(5):1776-88 [PMID: 3367220]
  27. Prog Neurobiol. 1977;9(3):147-96 [PMID: 202996]
  28. Brain Res. 1975 Mar 21;86(2):229-42 [PMID: 234774]
  29. Int J Mol Sci. 2022 Apr 30;23(9): [PMID: 35563419]
  30. Curr Neuropharmacol. 2008 Sep;6(3):254-85 [PMID: 19506724]
  31. Brain Res. 1978 Apr 28;145(2):257-76 [PMID: 416887]
  32. Nat Hum Behav. 2019 Nov;3(11):1203-1214 [PMID: 31501542]
  33. Front Neurosci. 2023 Aug 24;17:1264253 [PMID: 37694113]
  34. Annu Rev Neurosci. 2005;28:403-50 [PMID: 16022602]
  35. J Neural Transm (Vienna). 2006 Jun;113(6):721-8 [PMID: 16604299]
  36. Neurosci Lett. 1983 Aug 19;39(1):95-100 [PMID: 6633940]
  37. Brain. 2019 Sep 1;142(9):2558-2571 [PMID: 31327002]
  38. Exp Brain Res. 1989;77(2):257-70 [PMID: 2571514]
  39. Brain Res. 1980 Dec;2(3):235-64 [PMID: 7470856]
  40. J Neurosci. 2022 Apr 20;42(16):3484-3493 [PMID: 35277392]
  41. Psychopharmacology (Berl). 1992;108(1-2):159-69 [PMID: 1357704]

Grants

  1. P51 RR000169/NCRR NIH HHS
  2. R01 AG003376/NIA NIH HHS

MeSH Term

Animals
Locus Coeruleus
Macaca mulatta
Magnetic Resonance Imaging
Male
Immunohistochemistry
Neurons
Female
Tyrosine 3-Monooxygenase

Chemicals

Tyrosine 3-Monooxygenase

Word Cloud

Created with Highcharts 10.0.0LCneuronsbrainmacaquevolumedistinctregioncoeruleusnoradrenergicacrossregionsincludingsystemcentralfeaturesdetailedfunctionrhesusMRIcombinedmethodsthreemedialLocussendaxonsmultipleneocortexsubcorticalspinalcordManyaspectscognitionknowndependentsuggesteddysfunctionmayplayrolescognitivedeclineassociatednormativeagingneurodegenerativediseasebasicanatomicalbiochemicalexaminedmanyspeciescharacterizationsstructurelifespancurrentlyavailableincludesimportantmodelhumanstrikingsimilaritiesarchitecturebehavioralcapacitiespresentstudydescribemethodcombinestructuralNisslimmunofluorescenthistologyindividualmonkeysreconstruct3dimensionsentirenucleusUsingstandardizeddeterminedhigh-resolutionconfocalimagestyrosinehydroxylase-positivemappedrepresentationallowsdefinitionsproposedsubnucleilateralbasedlocationrespectgrayinsideoutsiderespectivelycompactdefineddenselypackedwithincompartmentenabledestimatedcelldensitycalculatedindependentlysubnucleusfirsttimecombinationallowprecisecharacterizationpotentialnucleimolecularhistologicalimmunohistochemicalrenderinglocusenablesdifferentiationsubcompartmentsAMIRAMRI/NisslsectionregistrationNorepinephrineTyrosinehydroxylase

Similar Articles

Cited By

No available data.