Methanobactins: Structures, Biosynthesis, and Microbial Diversity.

Reyvin M Reyes, Amy C Rosenzweig
Author Information
  1. Reyvin M Reyes: Department of Molecular Biosciences and Department of Chemistry, Northwestern University, Evanston, Illinois, USA; email: amyr@northwestern.edu.
  2. Amy C Rosenzweig: Department of Molecular Biosciences and Department of Chemistry, Northwestern University, Evanston, Illinois, USA; email: amyr@northwestern.edu.

Abstract

Methanobactins (Mbns) are ribosomally synthesized and posttranslationally modified peptide natural products released by methanotrophic bacteria under conditions of copper scarcity. Mbns bind Cu(I) with high affinity via nitrogen-containing heterocycles and thioamide groups installed on a precursor peptide, MbnA, by a core biosynthetic enzyme complex, MbnBC. Additional stabilizing modifications are enacted by other, less universal biosynthetic enzymes. Copper-loaded Mbn is imported into the cell by TonB-dependent transporters called MbnTs, and copper is mobilized by an unknown mechanism. The machinery to biosynthesize and transport Mbn is encoded in operons that are also found in the genomes of nonmethanotrophic bacteria. In this review, we provide an update on the state of the Mbn field, highlighting recent discoveries regarding Mbn structure, biosynthesis, and handling as well as the emerging roles of Mbns in the environment and their potential use as therapeutics.

Keywords

References

  1. J Am Chem Soc. 2016 Sep 7;138(35):11124-7 [PMID: 27527063]
  2. Appl Environ Microbiol. 2021 Feb 12;87(5):e0230120 [PMID: 33355098]
  3. Nat Commun. 2018 Apr 11;9(1):1383 [PMID: 29643375]
  4. J Trace Elem Med Biol. 2011 Jan;25(1):36-41 [PMID: 21242075]
  5. Chem Soc Rev. 2021 Mar 7;50(5):3424-3436 [PMID: 33491685]
  6. Biochemistry. 2018 Jun 26;57(25):3515-3523 [PMID: 29694778]
  7. Q Rev Biophys. 2004 Aug-Nov;37(3-4):285-314 [PMID: 16194296]
  8. Cell Res. 2022 Mar;32(3):302-314 [PMID: 35110668]
  9. Appl Environ Microbiol. 1993 Sep;59(9):2771-6 [PMID: 8215352]
  10. J Biol Chem. 2018 Mar 30;293(13):4606-4615 [PMID: 29348173]
  11. Chemistry. 2018 Mar 26;24(18):4515-4518 [PMID: 29365216]
  12. Environ Microbiol. 2013 Nov;15(11):3077-86 [PMID: 23682956]
  13. J Biol Chem. 2019 Nov 1;294(44):16141-16151 [PMID: 31511324]
  14. mBio. 2022 Oct 26;13(5):e0251322 [PMID: 36197089]
  15. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13027-13032 [PMID: 27807137]
  16. Int J Mol Sci. 2013 Nov 01;14(11):21676-88 [PMID: 24189217]
  17. Geobiology. 2022 Sep;20(5):690-706 [PMID: 35716154]
  18. Appl Environ Microbiol. 2013 Oct;79(19):5918-26 [PMID: 23872554]
  19. Biochemistry. 2021 Sep 28;60(38):2845-2850 [PMID: 34510894]
  20. Inorg Chem. 2011 Feb 21;50(4):1378-91 [PMID: 21254756]
  21. ISME J. 2018 Aug;12(8):2086-2089 [PMID: 29330532]
  22. Appl Environ Microbiol. 2003 Apr;69(4):2386-8 [PMID: 12676726]
  23. J Inorg Biochem. 2021 Oct;223:111496 [PMID: 34271330]
  24. Front Cell Dev Biol. 2022 May 02;10:871877 [PMID: 35586338]
  25. J Biol Chem. 2008 May 16;283(20):13897-904 [PMID: 18348978]
  26. FEMS Microbiol Lett. 2020 Mar 1;367(5): [PMID: 32166327]
  27. Appl Environ Microbiol. 2022 Apr 12;88(7):e0234621 [PMID: 35285718]
  28. Appl Environ Microbiol. 2022 Jan 11;88(1):e0179321 [PMID: 34669437]
  29. Metallomics. 2016 Sep 1;8(9):931-40 [PMID: 27087171]
  30. J Biol Chem. 2011 Oct 28;286(43):37313-9 [PMID: 21900235]
  31. J Clin Invest. 2016 Jul 1;126(7):2721-35 [PMID: 27322060]
  32. J Inorg Biochem. 2012 May;110:72-82 [PMID: 22504273]
  33. Chembiochem. 2023 Sep 1;24(17):e202300322 [PMID: 37191164]
  34. Metallomics. 2015 Jun;7(6):965-78 [PMID: 25891079]
  35. Appl Environ Microbiol. 2013 Aug;79(16):4932-9 [PMID: 23770899]
  36. J Inorg Biochem. 2006 Dec;100(12):2150-61 [PMID: 17070918]
  37. Appl Environ Microbiol. 2020 May 19;86(11): [PMID: 32220843]
  38. Environ Microbiol. 2022 Jul;24(7):3212-3228 [PMID: 35621051]
  39. Acta Crystallogr F Struct Biol Commun. 2023 May 1;79(Pt 5):111-118 [PMID: 37158309]
  40. Biochemistry. 2023 Mar 7;62(5):1082-1092 [PMID: 36812111]
  41. Angew Chem Int Ed Engl. 2023 Mar 6;62(11):e202213644 [PMID: 36653724]
  42. Science. 2022 Mar 18;375(6586):1287-1291 [PMID: 35298269]
  43. Chem Rev. 2014 Apr 23;114(8):4366-469 [PMID: 24758379]
  44. Nat Prod Rep. 2013 Jan;30(1):108-60 [PMID: 23165928]
  45. J Bacteriol. 1998 Jul;180(14):3606-13 [PMID: 9658004]
  46. Chem Rev. 2020 Jun 24;120(12):5252-5307 [PMID: 32108471]
  47. Nat Prod Rep. 2021 Jan 1;38(1):130-239 [PMID: 32935693]
  48. Science. 2018 Mar 23;359(6382):1411-1416 [PMID: 29567715]
  49. Annu Rev Microbiol. 2023 Sep 15;77:67-88 [PMID: 36944260]
  50. Annu Rev Biochem. 2018 Jun 20;87:645-676 [PMID: 29668305]
  51. Gastroenterology. 2023 Jul;165(1):187-200.e7 [PMID: 36966941]
  52. Angew Chem Int Ed Engl. 2023 Oct 16;62(42):e202304901 [PMID: 37403384]
  53. Annu Rev Biochem. 2019 Jun 20;88:409-431 [PMID: 30633550]
  54. Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2123566119 [PMID: 35320042]
  55. ACS Cent Sci. 2023 Apr 24;9(5):1008-1018 [PMID: 37252350]
  56. Biochemistry. 2006 Feb 7;45(5):1442-53 [PMID: 16445286]
  57. J Am Chem Soc. 2005 Dec 14;127(49):17142-3 [PMID: 16332035]
  58. J Am Chem Soc. 2007 Dec 26;129(51):15783-5 [PMID: 18052283]
  59. J Inorg Biochem. 2008 Aug;102(8):1571-80 [PMID: 18372044]
  60. Nat Catal. 2023 Dec;6(12):1194-1204 [PMID: 38187819]
  61. Appl Environ Microbiol. 1992 Nov;58(11):3701-8 [PMID: 16348810]
  62. BMC Biol. 2013 Feb 26;11:17 [PMID: 23442874]
  63. Environ Pollut. 2023 Aug 15;331(Pt 1):121790 [PMID: 37187279]
  64. PLoS One. 2014 Feb 03;9(2):e87750 [PMID: 24498370]
  65. Nat Chem Biol. 2015 Aug;11(8):564-70 [PMID: 26167873]
  66. ISME J. 2022 Jan;16(1):211-220 [PMID: 34290379]
  67. Nat Prod Rep. 2010 May;27(5):637-57 [PMID: 20376388]
  68. Microorganisms. 2015 Jun 23;3(2):290-309 [PMID: 27682090]
  69. Biochemistry. 2005 Apr 5;44(13):5140-8 [PMID: 15794651]
  70. mBio. 2022 Oct 26;13(5):e0223922 [PMID: 36129259]
  71. ISME J. 2012 Nov;6(11):2128-39 [PMID: 22695859]
  72. Microbiol Rev. 1996 Jun;60(2):439-71 [PMID: 8801441]
  73. J Inorg Biochem. 2014 Dec;141:161-169 [PMID: 25265378]
  74. Sci Total Environ. 2020 Jun 15;721:137760 [PMID: 32169650]
  75. J Biol Inorg Chem. 2017 Apr;22(2-3):307-319 [PMID: 27878395]
  76. J Trace Elem Med Biol. 2018 Sep;49:119-127 [PMID: 29895360]
  77. Curr Opin Biotechnol. 2022 Oct;77:102757 [PMID: 35914390]
  78. Appl Environ Microbiol. 2015 Feb;81(3):1024-31 [PMID: 25416758]
  79. Plants (Basel). 2022 Nov 12;11(22): [PMID: 36432794]
  80. J Bacteriol. 2010 Dec;192(24):6497-8 [PMID: 20952571]
  81. Nat Rev Microbiol. 2017 Jun;15(6):338-350 [PMID: 28344348]
  82. FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37 [PMID: 12829269]
  83. Environ Microbiol Rep. 2010 Jun;2(3):419-25 [PMID: 23766115]
  84. Appl Environ Microbiol. 2021 Jun 25;87(14):e0028621 [PMID: 33962982]
  85. Environ Microbiol. 2023 Nov;25(11):2338-2350 [PMID: 37395163]
  86. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8400-4 [PMID: 22582172]
  87. J Inorg Biochem. 2010 Dec;104(12):1240-7 [PMID: 20817303]
  88. J Am Chem Soc. 2008 Sep 24;130(38):12604-5 [PMID: 18729522]
  89. Science. 2004 Sep 10;305(5690):1612-5 [PMID: 15361623]
  90. Biochemistry. 2010 Nov 30;49(47):10117-30 [PMID: 20961038]
  91. Appl Environ Microbiol. 2016 Jan 15;82(6):1917-1923 [PMID: 26773085]
  92. Appl Environ Microbiol. 2022 Jan 25;88(2):e0184121 [PMID: 34731053]
  93. Biochim Biophys Acta Biomembr. 2020 Dec 1;1862(12):183154 [PMID: 31866287]
  94. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34074779]
  95. Methods Enzymol. 2021;656:341-373 [PMID: 34325792]
  96. Appl Environ Microbiol. 1998 Mar;64(3):1115-22 [PMID: 9501450]
  97. Metallomics. 2017 Jan 25;9(1):7-20 [PMID: 27905614]
  98. J Bacteriol. 2003 Oct;185(19):5755-64 [PMID: 13129946]
  99. Appl Environ Microbiol. 2016 Dec 15;83(1): [PMID: 27795312]
  100. Biotechnol Adv. 2021 Nov 1;51:107712 [PMID: 33588053]
  101. Sci Adv. 2017 May 31;3(5):e1700041 [PMID: 28580426]
  102. Geobiology. 2013 Jan;11(1):44-54 [PMID: 23082815]
  103. Biometals. 2009 Feb;22(1):3-13 [PMID: 19130258]

Grants

  1. R35 GM118035/NIGMS NIH HHS

MeSH Term

Bacteria
Bacterial Proteins
Copper
Imidazoles
Oligopeptides
Protein Processing, Post-Translational
Biodiversity

Chemicals

Bacterial Proteins
Copper
Imidazoles
methanobactin
Oligopeptides

Word Cloud

Created with Highcharts 10.0.0MbnMbnscopperpeptidenaturalbacteriabiosyntheticMethanobactinsribosomallysynthesizedposttranslationallymodifiedproductsreleasedmethanotrophicconditionsscarcitybindCuhighaffinityvianitrogen-containingheterocyclesthioamidegroupsinstalledprecursorMbnAcoreenzymecomplexMbnBCAdditionalstabilizingmodificationsenactedlessuniversalenzymesCopper-loadedimportedcellTonB-dependenttransporterscalledMbnTsmobilizedunknownmechanismmachinerybiosynthesizetransportencodedoperonsalsofoundgenomesnonmethanotrophicreviewprovideupdatestatefieldhighlightingrecentdiscoveriesregardingstructurebiosynthesishandlingwellemergingrolesenvironmentpotentialusetherapeuticsMethanobactins:StructuresBiosynthesisMicrobialDiversityRiPPproductchalkophorehomeostasismethanobactinmethanotroph

Similar Articles

Cited By