Raman spectroscopy - a visit to the literature on plant, food, and agricultural studies.

Ernane Miranda Lemes
Author Information
  1. Ernane Miranda Lemes: Instituto de Ci��ncias Agr��rias (ICIAG), Universidade Federal de Uberl��ndia (UFU), Uberl��ndia, Brazil. ORCID

Abstract

Raman spectroscopy, a fast, non-invasive, and label-free optical technique, has significantly advanced plant and food studies and precision agriculture by providing detailed molecular insights into biological tissues. Utilizing the Raman scattering effect generates unique spectral fingerprints that comprehensively analyze tissue composition, concentration, and molecular structure. These fingerprints are obtained without chemical additives or extensive sample preparation, making Raman spectroscopy particularly suitable for in-field applications. Technological enhancements such as surface-enhanced Raman scattering, Fourier-transform-Raman spectroscopy, and chemometrics have increased Raman spectroscopy sensitivity and precision. These and other advancements enable real-time monitoring of compound translocation within plants and improve the detection of chemical and biological contaminants, essential for food safety and crop optimization. Integrating Raman spectroscopy into agronomic practices is transformative and marks a shift toward more sustainable farming activities. It assesses crop quality - as well as the quality of the food that originated from crop production - early plant stress detection and supports targeted breeding programs. Advanced data processing techniques and machine learning integration efficiently handle complex spectral data, providing a dynamic and detailed view of food conditions and plant health under varying environmental and biological stresses. As global agriculture faces the dual challenges of increasing productivity and sustainability, Raman spectroscopy stands out as an indispensable tool, enhancing farming practices' precision, food safety, and environmental compatibility. This review is intended to select and briefly comment on outstanding literature to give researchers, students, and consultants a reference for works of literature in Raman spectroscopy mainly focused on plant, food, and agronomic sciences. �� 2024 Society of Chemical Industry.

Keywords

References

  1. Ali MM, Bachik NA, Muhadi N, Muhadi NA, Yusof TNT and Gomes C, Non���destructive techniques of detecting plant diseases: a review. Physiol Mol Plant Pathol 108:101426 (2019).
  2. Farber CR, Mahnke M, Sanchez L and Kurouski D, Advanced spectroscopic techniques for plant disease diagnostics. A review. Trends Anal Chem 118:43���49 (2019).
  3. Felhofer M, Bock P and Gierlinger N, Raman microscopy on plants: chemical pictures based on molecular vibrations. Microsc Anal 56:16���17 (2021) Available from: https://analyticalscience.wiley.com/content/magazine���do/september���october���2021.
  4. Huck CW, Selected latest applications of molecular spectroscopy in natural product analysis. Phytochem Lett 20:491���498 (2017).
  5. Jin H, Lu Q, Chen X, Ding H, Gao H and Jin S, The use of raman spectroscopy in food processes: a review. Appl Spectrosc Rev 51:12���22 (2015).
  6. Jones RR, Hooper DC, Zhang L, Wolverson D and Valev VK, Raman techniques: fundamentals and frontiers. Nanoscale Res Lett 14:231 (2019).
  7. Joshi R, Kholiya S, Pandley H, Joshi R, Emmanuel O, Tewari A et al., A comparison of ATR���FTIR and raman spectroscopy for the non���destructive examination of terpenoids in medicinal plants essential oils. Korean J Agric Sci 50:675���696 (2023).
  8. Movasaghi Z, Rehman S and Rehman IU, Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493���541 (2007).
  9. Orlando A, Franceschini F, Muscas C, Pidkova S, Bartoli M, Rovere M et al., A comprehensive review on raman spectroscopy applications. Chemosensors 9:262 (2021).
  10. Park M, Somborn A, Schlehuber D, Keuter V and Deerberg G, Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review. Hortic Res 10:1���5 (2023).
  11. Payne WZ and Kurouski D, Raman spectroscopy enables phenotyping and assessment of nutrition values of plants: a review. Plant Methods 17:78 (2021).
  12. Saletnik A, Saletnik B and Puchalski C, Overview of popular techniques of raman spectroscopy and their potential in the study of plant tissues. Molecules 26:1537 (2021).
  13. Schulz H, Spectroscopic technique: raman spectroscopy, in Modern techniques for food authentication [Internet]. Elsevier BV, London, pp. 139���191 (2018). https://doi.org/10.1016/B978-0-12-814264-6.00005-0.
  14. Sun Y, Tang H, Zou X, Meng G and Wu N, Raman spectroscopy for food quality assurance and safety monitoring: a review. Curr Opin Food Sci 47:100910 (2022).
  15. Talari ACS, Movasaghi Z, Rehman S and Rehman IU, Raman spectroscopy of biological tissues. Appl Spectrosc Rev 50:46���111 (2014).
  16. Walsh KB, McGlone VA and Han DH, The uses of near infra���red spectroscopy in postharvest decision support: a review. Postharvest Biol Technol 163:111139 (2020).
  17. Wang K, Li Z, Li J and Lin H, Raman spectroscopic techniques for nondestructive analysis of agri���foods: a state���of���the���art review. Trends Food Sci Technol 118:490���504 (2021).
  18. Wang W, Ma P and Song D, Applications of surface���enhanced raman spectroscopy based on portable raman spectrometers: a review of recent developments. Luminescence 37:1822���1835 (2022).
  19. Weng S, Hu X, Wang J, Tang L, Li P, Zheng S et al., Advanced application of raman spectroscopy and surface���enhanced raman spectroscopy in plant disease diagnostics: a review. J Agric Food Chem 69:2950���2964 (2021).
  20. Zavafer A and Ball MC, Good vibrations: raman spectroscopy enables insights into plant biochemical composition. Funct Plant Biol 50:1���16 (2022).
  21. Tuchin V, Tissue optics and photonics: light���tissue interaction II. J Biomed Photonics Eng 2:030201 (2016).
  22. Tuchin VV, Tissue optics and photonics: biological tissue structures. J Biomedical Photonics Eng 1:3���21 (2015a).
  23. Tuchin VV, Tissue optics and photonics: light���tissue interaction. J Biomed Photonics Eng 1:98���134 (2015b).
  24. Cozzolino D and Roberts J, Applications and developments on the use of vibrational spectroscopy imaging for the analysis, monitoring and characterisation of crops and plants. Molecules 21:755 (2016).
  25. Lu R, Van Beers R, Saeys W, Li C and Cen H, Measurement of optical properties of fruits and vegetables: a review. Postharvest Biol Technol 159:111003 (2020) Available from: https://www.sciencedirect.com/science/article/abs/pii/S0925521419300870.
  26. Clarke RJ and Oprysa A, Fluorescence and light scattering. J Chem Educ 81:705 (2004).
  27. Cavaco AM, Utkin AB, da Silva JM and Guerra R, Making sense of light: the use of optical spectroscopy techniques in plant sciences and agriculture. Appl Sci 12:997 (2022).
  28. Smekal A, Zur Quantentheorie Der Streuung Und Dispersion. Naturwissenschaften 16:612���613 (1928).
  29. Raman CV and Krishnan KS, A new type of secondary radiation. Nature 121:501���502 (1928).
  30. Landsberg G and Mandelstam L, Eine Neue Erscheinung Bei Der Lichtzerstreuung in Krystallen. Naturwissenschaften 16:557���558 (1928).
  31. Fabelinski�� IL, Seventy years of combination (Raman) scattering. Phys ���Usp 41:1229���1247 (1998).
  32. Fabelinski�� IL, The discovery of combination scattering of light in Russia and India. Phys���Usp 46:1105���1112 (2003).
  33. Fabelinski�� IL, The discovery of combinational scattering of light (the raman effect). Sov Phys Usp 21:780���797 (1978).
  34. Cabannes J and Duare P, Analyse Spectroscopique De La Lumiere Obtenue Par Diffusion Mol��culaire D'une Radiation Monochromatique Au Sein D'un Fluide. C R l'Acad Sci Paris 186:1533���1534 (1928).
  35. Rocard Y, Les nouvelles radiations diffus��es. C R Acad Sci 186:1107���1109 (1928).
  36. Sanchez L, Farber CM, Lei J, Zhu���Salzman K and Kurouski D, Noninvasive and nondestructive detection of cowpea Bruchid within cowpea seeds with a hand���held raman spectrometer. Anal Chem 91:1733���1737 (2019a).
  37. Sanchez L, Pant S, Irey M, Mandadi K and Kurouski D, Detection and identification of canker and blight on orange trees using a hand���held raman spectrometer. J Raman Spectrosc 50:1875���1880 (2019b).
  38. Liu Y and Jin T, Application of raman spectroscopy technique to agricultural products quality and safety determination. Spectrosc Spectral Anal 35:2567���2572 (2015).
  39. Xu S, Huang X and Lu H, Advancements and applications of raman spectroscopy in rapid quality and safety detection of fruits and vegetables. Horticulturae 9:843 (2023).
  40. Agarwal UP, Analysis of cellulose and lignocellulose materials by raman spectroscopy: a review of the current status. Molecules 24:1659 (2019).
  41. Long DA, The Raman Effect ��� a Unified Treatment of the Theory of Raman Scattering by Molecules [Internet]. John Wiley & Sons, New York (2002). https://doi.org/10.1002/0470845767.
  42. Saletnik A, Saletnik B and Puchalski C, Raman method in identification of species and varieties, assessment of plant maturity and crop quality���a review. Molecules 27:4454 (2022).
  43. Altangerel N, Ariunbold GO, Gorman C, Alkahtani MH, Borrego EJ, Bohlmeyer D et al., In vivo diagnostics of early abiotic plant stress response via raman spectroscopy. Proc Natl Acad Sci 114:3393���3396 (2017).
  44. Arendse E, Fawole OA, Magwaza LS and Opara UL, Non���destructive prediction of internal and external quality attributes of fruit with thick rind: a review. J Food Eng 217:11���23 (2018).
  45. Huang CH, Singh GP, Park SH, Chua NH, Ram RJ and Park BS, Early diagnosis and management of nitrogen deficiency in plants utilizing raman spectroscopy. Front Plant Sci 11:663 (2020).
  46. Lew TTS, Sarojam R, Jang IC, Park BS, Naqvi NI, Wong MH et al., Species���independent analytical tools for next���generation agriculture. Nat Plants 6:1408���1417 (2020).
  47. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J et al., Using raman spectroscopy to characterize biological materials. Nat Protoc 11:664���687 (2016).
  48. Be�� KB, Grabska J, Bonn GK, Popp M and Huck CW, Principles and applications of vibrational spectroscopic imaging in plant science: a review. Front Plant Sci 11:1226 (2020).
  49. Schulz H, Kr��hmer A, Naumann A and Gudi G, Infrared and raman spectroscopic mapping and imaging of plant materials, in Infrared and Raman spectroscopic imaging: second, completely revised and updated edition [Internet]. Wiley, Weinheim, pp. 225���294 (2014). https://doi.org/10.1002/9783527678136.ch6.
  50. Ferrari AC and Basko DM, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235���246 (2013).
  51. Li X, Zhou R, Xu Y, Wei X and He Y, Spectral unmixing combined with raman imaging, a preferable analytic technique for molecule visualization. Appl Spectrosc Rev 52:417���438 (2016).
  52. Mitsutake H, Poppi RJ, Breitkreitz MC, Mitsutake H, Poppi RJ and Breitkreitz MC, Raman imaging spectroscopy: history, fundamentals and current scenario of the technique. J Braz Chem Soc 30:2243���2258 (2019).
  53. Baranska M, Roman M, Dobrowolski JC, Schulz H and Baranski R, Recent advances in raman analysis of plants: alkaloids, carotenoids, and polyacetylenes. Curr Anal Chem 9:108���127 (2013).
  54. Chen R, Liu F, Zhang C, Wang W, Yang R, Zhao Y et al., Trends in digital detection for the quality and safety of herbs using infrared and raman spectroscopy. Front Plant Sci 14:1128300 (2023).
  55. Egging V, Nguyen J and Kurouski D, Detection and identification of fungal infections in intact wheat and sorghum grain using a hand���held raman spectrometer. Anal Chem 90:8616���8621 (2018).
  56. Farber CB, Raman Spectroscopy for the Non���Invasive and Non���Destructive Analysis of Plants [Internet] oaktrust.library.tamu.edu. 2021 [cited 2024 Apr 4]. Available from: https://oaktrust.library.tamu.edu/handle/1969.1/196275.
  57. Gunawardana S, Gunasekara C and Sirimuthu N, Raman spectroscopy in phytochemical analysis. Sri Lankan J Appl Sci 1:1���10 (2022) Available from: https://sljoas.uwu.ac.lk/index.php/sljoas/article/view/24.
  58. He Z, Nam S and Fang D, Raman spectroscopic assessment of fibers and seeds of six cotton genotypes. Agric Environ Lett 8:1���5 (2023).
  59. Jain E, Rose M, Jayapal PK, Singh GP and Ram RJ, Harnessing raman spectroscopy for the analysis of plant diversity. Sci Rep 14:12692 (2024).
  60. Jentzsch PV and Ciobot�� V, Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour Fragr J 29:287���295 (2014).
  61. Jim��nez���Sanchidri��n C and Ruiz JR, Use of raman spectroscopy for analyzing edible vegetable oils. Appl Spectrosc Rev 51:417���430 (2016).
  62. Naqvi SMZA, Zhang Y, Ahmed S, Abdulraheem MI, Hu J, Tahir MN et al., Applied surface enhanced raman spectroscopy in plant hormones detection, annexation of advanced technologies: a review. Talanta 236:122823 (2022).
  63. Park J, Thomasson JA, Lee KM, Suh CPC, Perez JL and Herrman TJ, VOCs determination by adsorbent���raman system in food and botanicals. Anal Methods 12:1595���1605 (2020).
  64. Payne WZ and Kurouski D, Raman���based diagnostics of biotic and abiotic stresses in plants. A review. Front Plant Sci 11:1���17 (2021).
  65. Petersen M, Yu Z and Lu X, Application of raman spectroscopic methods in food safety: a review. Biosensors 11:187 (2021).
  66. Roy M and Prasad A, Raman spectroscopy for nutritional stress detection in plant vascular tissue. SSRN Electron J 24:101474 (2022).
  67. Sanchez L, Ermolenkov A, Biswas S, Septiningsih EM and Kurouski D, Raman spectroscopy enables non���invasive and confirmatory diagnostics of salinity stresses, nitrogen, phosphorus, and potassium deficiencies in rice. Front Plant Sci 11:11 (2020a).
  68. Sanchez L, Pant S, Mandadi K and Kurouski D, Raman spectroscopy vs quantitative polymerase chain reaction in early stage Huanglongbing diagnostics. Sci Rep 10:1���6 (2020b).
  69. Xu CX, Song P, Yu Z and Wang YH, Surface���enhanced raman spectroscopy as a powerful method for the analysis of chinese herbal medicines. Analyst 149:46���58 (2024).
  70. Zeng J, Ping W, Sanaeifar A, Xu X, Luo W, Sha J et al., Quantitative visualization of photosynthetic pigments in tea leaves based on raman spectroscopy and calibration model transfer. Plant Methods 17:4 (2021).
  71. Schulz H and Baranska M, Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13���25 (2007). https://doi.org/10.1016/j.vibspec.2006.06.001.
  72. Saletnik A, Saletnik B, Zagu��a G and Puchalski C, Raman Spectroscopy for plant disease detection in next���generation agriculture. Sustainability 16:1���18 (2024). https://doi.org/10.3390/su16135474.
  73. Bureau S, Cozzolino D and Clark CJ, Contributions of fourier���transform mid infrared (FT���MIR) spectroscopy to the study of fruit and vegetables: a review. Postharvest Biol Technol 148:1���14 (2019).
  74. Chase DB, Fourier transform raman spectroscopy. J Am Chem Soc 108:7485���7488 (1986).
  75. Cialla D, M��rz A, B��hme R, Theil F, Weber K, Schmitt M et al., Surface���enhanced raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27���54 (2011).
  76. Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez���Puebla RA, Augui�� B, Baumberg JJ et al., Present and future of surface���enhanced raman scattering. ACS Nano 14:28���117 (2019).
  77. McNay G, Eustace D, Smith WE, Faulds K and Graham D, Surface���enhanced raman scattering (SERS) and surface���enhanced resonance raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825���837 (2011).
  78. Ntziouni A, Thomson JM, Xiarchos I, Li X, Ba��ares MA, Charitidis CA et al., Review of existing standards, guides, and practices for raman spectroscopy. Appl Spectrosc 76:747���772 (2022).
  79. Yang T, Doherty J, Guo H, Zhao B, Clark JM, Xing B et al., Real���time monitoring of pesticide translocation in tomato plants by surface���enhanced raman spectroscopy. Anal Chem 91:2093���2099 (2019).
  80. Sun H, Xiong S, Shi B, Zhou Y, Bi C, Li J et al., Flexible surface���enhanced raman scattering (SERS) sensor for residue���free pesticide detection based on agriculture 4.0 concepts. Colloids Surf A Physicochem Eng Asp 700:134647 (2024).
  81. Zhang D, Liang P, Wen���wen C, Tang Z, Li C, Xiao K et al., Rapid field trace detection of pesticide residue in food based on surface���enhanced raman spectroscopy. Mikrochim Acta 188:1���28 (2021).
  82. Xu M���L, Gao Y, Han XX and Zhao B, Detection of pesticide residues in food using surface���enhanced Raman spectroscopy: A review. J Agric Food Chem 65:6719���6726 (2017). https://doi.org/10.1021/acs.jafc.7b02504.
  83. Guo S, Popp J and Bocklitz T, Chemometric analysis in raman spectroscopy from experimental design to machine learning���based modeling. Nat Protoc 16:5426���5459 (2021).
  84. Sharma S, Kola��inac S, Jiang X, Gao J, Kumari D, Biswas S et al., Raman spectroscopy���based chemometrics for pesticide residue detection: current approaches and future challenges. ACS Agric Sci Technol 4:389���404 (2024).
  85. Gall A, Pascal AA and Robert B, Vibrational techniques applied to photosynthesis: resonance raman and fluorescence line���narrowing. Biochim Biophys Acta���Bioenerg 1847:12���18 (2015).
  86. Gudkov SV, Matveeva TA, Sarimov RM, Simakin AV, Stepanova EV, Moskovskiy MN et al., Optical methods for the detection of plant pathogens and diseases (review). AgriEng 5:1789���1812 (2023).
  87. K��gler M and Heilala B, Time���gated raman spectroscopy ��� a review. Meas Sci Technol 32:012002 (2020).
  88. Larkin P, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, Cop, Amsterdam; Boston; Heidelberg Etc (2011).
  89. Lines AM, Hall GB, Asmussen SE, Allred JR, Sinkov SI, Heller F et al., Sensor fusion: comprehensive real���time, on���line monitoring for process control via visible, near���infrared, and raman spectroscopy. ACS Sens 5:2467���2475 (2020).
  90. Panczer G, Gaft M, Reisfeld R, Shoval S, Boulon G and Champagnon B, Luminescence of uranium in natural apatites. J Alloys Compd 275���277:269���272 (1998).
  91. Post C, Br��lisauer S, Waldschl��ger K, Hug W, Gr��neis L, Heyden N et al., Application of laser���induced, deep UV raman spectroscopy and artificial intelligence in real���time environmental monitoring���solutions and first results. Sensors 21:3911 (2021).
  92. Robert B, Resonance raman spectroscopy. Photosynth Res 101:147���155 (2009).
  93. Rostron P, Gaber S and Gaber D, Raman spectroscopy, review. Int J Eng Tech Res 6:50���64 (2016) Available from: https://www.erpublication.org/page/view_issue/volume6-issue1.
  94. Schrader B, Klump HH, Schenzel K and Schulz H, Non���destructive NIR FT raman analysis of plants. J Mol Struct 509:201���212 (1999).
  95. Schrader B, Infrared and Raman Spectroscopy [Internet]. Wiley eBooks. Wiley, Weinheim, Germany (1995). https://doi.org/10.1002/9783527615438.
  96. Wei D, Chen S and Liu Q, Review of fluorescence suppression techniques in raman spectroscopy. Appl Spectrosc Rev 50:387���406 (2015) Available from: https://dr.ntu.edu.sg/bitstream/10356/107475/1/Review%20of%20Fluorescence%20Suppression%20Techniques%20in%20Raman%20Spectroscopy.pdf.
  97. Xiong H, Shi L, Wei L, Shen Y, Long R, Zhao Z et al., Stimulated raman excited fluorescence spectroscopy and imaging. Nat Photonics 13:412���417 (2019).
  98. Farber C and Kurouski D, Raman Spectroscopy and machine learning for agricultural applications: chemometric assessment of spectroscopic signatures of plants as the essential step toward digital farming. Front Plant Sci 13:887511 (2022).
  99. Qi Y, Hu D, Jiang Y, Wu Z, Zheng M, Chen EX et al., Recent progresses in machine learning assisted raman spectroscopy. Adv Opt Mater 11:1���22 (2023).
  100. Rahman MHU, Sikder R, Tripathi M, Zahan M, Ye T, Gnimpieba ZE et al., Machine learning���assisted raman spectroscopy and SERS for bacterial pathogen detection: clinical, food safety, and environmental applications. Chemosensors 12:140 (2024).

MeSH Term

Spectrum Analysis, Raman
Crops, Agricultural
Agriculture
Food Safety
Plants

Word Cloud

Created with Highcharts 10.0.0Ramanspectroscopyfoodplantprecisionagriculturebiologicalscatteringspectralcrop-literatureopticalstudiesprovidingdetailedmolecularfingerprintschemicalmonitoringdetectionsafetyagronomicsustainablefarmingqualitydataenvironmentalfastnon-invasivelabel-freetechniquesignificantlyadvancedinsightstissuesUtilizingeffectgeneratesuniquecomprehensivelyanalyzetissuecompositionconcentrationstructureobtainedwithoutadditivesextensivesamplepreparationmakingparticularlysuitablein-fieldapplicationsTechnologicalenhancementssurface-enhancedFourier-transform-Ramanchemometricsincreasedsensitivityadvancementsenablereal-timecompoundtranslocationwithinplantsimprovecontaminantsessentialoptimizationIntegratingpracticestransformativemarksshifttowardactivitiesassesseswelloriginatedproductionearlystresssupportstargetedbreedingprogramsAdvancedprocessingtechniquesmachinelearningintegrationefficientlyhandlecomplexdynamicviewconditionshealthvaryingstressesglobalfacesdualchallengesincreasingproductivitysustainabilitystandsindispensabletoolenhancingpractices'compatibilityreviewintendedselectbrieflycommentoutstandinggiveresearchersstudentsconsultantsreferenceworksmainlyfocusedsciences��2024SocietyChemicalIndustryvisitagriculturalinelasticphysiologyfingerprinting

Similar Articles

Cited By

No available data.