Ultrastructural, metabolic and genetic characteristics of determinants facilitating the acquisition of macrolide resistance by Streptococcus pneumoniae.

Xueqing Wu, Babek Alibayov, Xi Xiang, Santiago M Lattar, Fuminori Sakai, Austin A Medders, Brenda S Antezana, Lance E Keller, Ana G J Vidal, Yih-Ling Tzeng, D Ashley Robinson, David S Stephens, Yunsong Yu, Jorge E Vidal
Author Information
  1. Xueqing Wu: Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China.
  2. Babek Alibayov: Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States.
  3. Xi Xiang: Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
  4. Santiago M Lattar: Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States.
  5. Fuminori Sakai: Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States.
  6. Austin A Medders: Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States.
  7. Brenda S Antezana: Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States.
  8. Lance E Keller: Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States.
  9. Ana G J Vidal: Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States.
  10. Yih-Ling Tzeng: Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States.
  11. D Ashley Robinson: Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States.
  12. David S Stephens: Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States.
  13. Yunsong Yu: Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China. Electronic address: yvys119@zju.edu.cn.
  14. Jorge E Vidal: Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States. Electronic address: jvidal@umc.edu.

Abstract

AIMS: To investigate the molecular events associated with acquiring macrolide resistance genes [mefE/mel (Mega) or ermB] in Streptococcus pneumoniae (Spn) during nasopharyngeal colonization.
METHODS AND RESULTS: Genomic analysis of 128 macrolide-resistant Spn isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn916-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn916-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23���kb) or not (���5.4���kb). The rF for Mega Class IV(c) insertion region (���53���kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose.
CONCLUSIONS: Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.

References

  1. Appl Environ Microbiol. 2017 Aug 1;83(16): [PMID: 28576759]
  2. Infect Immun. 2011 Oct;79(10):4050-60 [PMID: 21825061]
  3. FEMS Microbiol Lett. 2017 Sep 15;364(17): [PMID: 28903467]
  4. Front Cell Infect Microbiol. 2014 Nov 06;4:163 [PMID: 25414838]
  5. BMC Microbiol. 2008 Oct 08;8:173 [PMID: 18842140]
  6. Genes (Basel). 2020 Jun 06;11(6): [PMID: 32517221]
  7. BMC Genomics. 2013 Jul 24;14:500 [PMID: 23879707]
  8. Genome Biol Evol. 2014 Jun 10;6(7):1589-602 [PMID: 24916661]
  9. Infect Immun. 2012 Aug;80(8):2744-60 [PMID: 22645283]
  10. Emerg Infect Dis. 2021 Jun;27(6):1689-1692 [PMID: 33915076]
  11. BMC Bioinformatics. 2011 Aug 04;12:321 [PMID: 21816034]
  12. Antimicrob Agents Chemother. 2023 Feb 16;67(2):e0108322 [PMID: 36651739]
  13. Cell Host Microbe. 2017 Dec 13;22(6):757-765.e3 [PMID: 29199098]
  14. J Infect. 2019 Oct;79(4):300-311 [PMID: 31299410]
  15. Nat Genet. 2014 Mar;46(3):305-309 [PMID: 24509479]
  16. J Mol Med (Berl). 2010 Feb;88(2):97-102 [PMID: 19898768]
  17. Trends Microbiol. 2013 Mar;21(3):129-35 [PMID: 23273566]
  18. Antimicrob Agents Chemother. 2006 Oct;50(10):3361-6 [PMID: 17005818]
  19. Antimicrob Agents Chemother. 2004 Jun;48(6):2037-42 [PMID: 15155196]
  20. Front Cell Infect Microbiol. 2015 Jan 13;4:194 [PMID: 25629011]
  21. Antimicrob Agents Chemother. 1998 Sep;42(9):2312-8 [PMID: 9736555]
  22. PLoS Genet. 2018 Jun 13;14(6):e1007410 [PMID: 29897968]
  23. mBio. 2018 May 15;9(3): [PMID: 29764945]
  24. Annu Rev Genet. 2015;49:577-601 [PMID: 26473380]
  25. Clin Microbiol Rev. 2016 Jul;29(3):525-52 [PMID: 27076637]
  26. Biochemistry. 2010 Oct 12;49(40):8803-12 [PMID: 20853856]
  27. Nat Commun. 2022 May 5;13(1):2477 [PMID: 35513365]
  28. Infect Immun. 2013 Apr;81(4):1341-53 [PMID: 23403556]
  29. Antimicrob Agents Chemother. 2002 Sep;46(9):2727-34 [PMID: 12183222]
  30. Antimicrob Agents Chemother. 2009 Mar;53(3):1293-4 [PMID: 19104015]
  31. FEMS Microbiol Rev. 2009 May;33(3):643-56 [PMID: 19228200]
  32. Front Microbiol. 2019 Apr 24;10:868 [PMID: 31105666]
  33. Infection. 2024 Jun;52(3):801-811 [PMID: 37919621]
  34. BMC Genomics. 2011 Aug 08;12:402 [PMID: 21824423]
  35. J Clin Microbiol. 2013 Feb;51(2):647-52 [PMID: 23224094]
  36. PLoS Pathog. 2018 Nov 26;14(11):e1007438 [PMID: 30475919]
  37. Expert Rev Vaccines. 2012 Jul;11(7):841-55 [PMID: 22913260]
  38. J Antimicrob Chemother. 2014 Apr;69(4):924-31 [PMID: 24324223]
  39. Emerg Microbes Infect. 2022 Dec;11(1):606-615 [PMID: 35135440]
  40. Nat Commun. 2020 Jul 10;11(1):3442 [PMID: 32651390]
  41. Nat Microbiol. 2016 Apr 11;1(6):16044 [PMID: 27572835]
  42. Infect Immun. 1990 Sep;58(9):3135-8 [PMID: 2167295]
  43. PLoS One. 2015 Mar 23;10(3):e0121064 [PMID: 25798884]
  44. Epidemiol Mikrobiol Imunol. 2019 Spring;68(2):75-81 [PMID: 31398980]
  45. Microbiol Spectr. 2023 Mar 13;:e0375922 [PMID: 36912669]
  46. Science. 2019 May 24;364(6442):778-782 [PMID: 31123134]
  47. Vaccine. 2011 Sep 14;29 Suppl 3:C43-8 [PMID: 21896352]
  48. Front Microbiol. 2014 Oct 20;5:535 [PMID: 25368607]
  49. Microbiol Res. 2022 Oct;263:127134 [PMID: 35905580]
  50. PLoS Pathog. 2023 May 31;19(5):e1011421 [PMID: 37256908]
  51. Front Microbiol. 2015 Feb 09;6:26 [PMID: 25709602]
  52. J Infect Dis. 2001 Jul 1;184(1):56-65 [PMID: 11398110]
  53. Nucleic Acids Res. 2015 Feb 18;43(3):e15 [PMID: 25414349]

Grants

  1. P20 GM121334/NIGMS NIH HHS
  2. R01 AI175461/NIAID NIH HHS
  3. R21 AI112768/NIAID NIH HHS
  4. R21 AI144571/NIAID NIH HHS

MeSH Term

Streptococcus pneumoniae
Humans
Macrolides
Anti-Bacterial Agents
Drug Resistance, Bacterial
Nasopharynx
Pneumococcal Infections
Biofilms
DNA Transposable Elements
Bacterial Proteins
Microbial Sensitivity Tests
Recombination, Genetic
Conjugation, Genetic
Membrane Proteins

Chemicals

Macrolides
Anti-Bacterial Agents
DNA Transposable Elements
Bacterial Proteins
MefE protein, Streptococcus pneumoniae
Membrane Proteins

Word Cloud

Created with Highcharts 10.0.0resistanceacquisitionmacrolideMeganasopharyngealelementsrFICEseventsassociatedgenesStreptococcuspneumoniaeSpncolonizationrevealedrecombinationstrainsTn916-relatedclustersfacilitatingdeterminantsfrequencyextracellularintracellularhighercapsulelocusAIMS:investigatemolecularacquiring[mefE/melermB]METHODSANDRESULTS:Genomicanalysis128macrolide-resistantisolatesconjugationapparatuscompetencesystemcarryingStudiesusingconfocalelectronmicroscopydemonstratedtransfercellbiofilmspneumococcalformedhighRemarkablyaggregatescompriseencapsulatednonencapsulatedpneumococcispancompartmentsassessmentsshowedsimilarratesregardlesslargeintegrativeconjugative>23���kb���54���kbClassIVcinsertionregion���53���kbthreeordersmagnitudetransformationMetabolomicsstudiesmicroenvironmentcreatedhumancellslinkpathwaysinvolvingnicotinicacidsucroseCONCLUSIONS:PneumococcalfacilitateacquiredMetabolicchangesserveinterventiontargetsUltrastructuralmetabolicgeneticcharacteristics

Similar Articles

Cited By