Deciphering the adsorption machinery of Deep-Blue and Vp4, two myophages targeting members of the group.

Manon Nuytten, Audrey Leprince, Adeline Goulet, Jacques Mahillon
Author Information
  1. Manon Nuytten: Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Universit�� Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium. ORCID
  2. Audrey Leprince: Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Universit�� Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium. ORCID
  3. Adeline Goulet: Laboratoire d'Ing��nierie des Syst��mes Macromol��culaires (LISM), Institut de Microbiologie, Bio��nergies et Biotechnologie (IM2B), CNRS and Aix-Marseille Universit�� UMR7255, Marseille, France. ORCID
  4. Jacques Mahillon: Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Universit�� Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium. ORCID

Abstract

In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two phages infecting members of the group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection.
IMPORTANCE: The group comprises closely related species, including some with pathogenic potential (e.g., and ). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Vp4 and Deep-Blue myophages preying on hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.

Keywords

References

  1. Genome Announc. 2013 Oct 03;1(5): [PMID: 24092776]
  2. Elife. 2019 Sep 17;8: [PMID: 31526474]
  3. Arch Virol. 2023 Jan 23;168(2):74 [PMID: 36683075]
  4. Nat Microbiol. 2019 Nov;4(11):1885-1894 [PMID: 31384001]
  5. Mol Microbiol. 2017 May;104(4):608-620 [PMID: 28196397]
  6. J Virol. 2023 Mar 30;97(3):e0179322 [PMID: 36916948]
  7. Viruses. 2023 Jan 10;15(1): [PMID: 36680236]
  8. Appl Environ Microbiol. 2006 Jul;72(7):5118-21 [PMID: 16820519]
  9. Microb Biotechnol. 2020 Nov;13(6):1765-1779 [PMID: 32525270]
  10. Biophys Rev. 2016 Dec;8(4):385-396 [PMID: 28510021]
  11. Compr Rev Food Sci Food Saf. 2021 Jul;20(4):3719-3761 [PMID: 34160120]
  12. J Virol. 2012 Oct;86(19):10384-98 [PMID: 22787233]
  13. Methods Mol Biol. 1994;32:9-15 [PMID: 7951753]
  14. Nucleic Acids Res. 2016 Jul 8;44(W1):W351-5 [PMID: 27131377]
  15. Front Mol Biosci. 2022 Aug 19;9:960325 [PMID: 36060267]
  16. J Biol Chem. 2010 Dec 10;285(50):39079-86 [PMID: 20937834]
  17. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  18. Environ Microbiol Rep. 2009 Jun;1(3):177-83 [PMID: 23765791]
  19. J Food Prot. 2019 Jul;82(7):1210-1216 [PMID: 31233363]
  20. Viruses. 2019 Jul 09;11(7): [PMID: 31324000]
  21. Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5 [PMID: 18940856]
  22. Microorganisms. 2022 Nov 16;10(11): [PMID: 36422348]
  23. Microbiol Spectr. 2019 May;7(3): [PMID: 31111815]
  24. Methods Mol Biol. 2009;501:69-76 [PMID: 19066811]
  25. Appl Environ Microbiol. 2013 Aug;79(16):4829-37 [PMID: 23747700]
  26. J Virol. 2014 Jun;88(12):7005-15 [PMID: 24719416]
  27. Annu Rev Virol. 2020 Sep 29;7(1):371-384 [PMID: 32559405]
  28. Genome Announc. 2016 Jun 16;4(3): [PMID: 27313285]
  29. Biochemistry (Mosc). 2020 May;85(5):567-574 [PMID: 32571186]
  30. Int J Syst Evol Microbiol. 2013 Jan;63(Pt 1):31-40 [PMID: 22328607]
  31. Adv Exp Med Biol. 2012;726:93-114 [PMID: 22297511]
  32. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  33. Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1373-82 [PMID: 9828439]
  34. Int J Syst Evol Microbiol. 2017 Aug;67(8):2499-2508 [PMID: 28792367]
  35. Adv Virus Res. 2012;83:299-365 [PMID: 22748813]
  36. FEMS Microbiol Lett. 2014 Apr;353(2):124-31 [PMID: 24627989]
  37. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20287-92 [PMID: 21041684]
  38. Annu Rev Microbiol. 2017 Sep 8;71:79-98 [PMID: 28622090]
  39. J Biol Chem. 2008 Feb 1;283(5):2716-23 [PMID: 18045876]
  40. Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10174-9 [PMID: 27555589]
  41. Bacteriophage. 2011 Jan;1(1):46-49 [PMID: 21687534]
  42. Cell Rep. 2019 Oct 29;29(5):1336-1350.e4 [PMID: 31665644]
  43. Mol Microbiol. 2014 Apr;92(1):84-99 [PMID: 24673724]
  44. Viruses. 2018 Jul 28;10(8): [PMID: 30060549]
  45. PLoS Biol. 2021 Nov 16;19(11):e3001424 [PMID: 34784345]
  46. Nat Rev Microbiol. 2020 Mar;18(3):125-138 [PMID: 32015529]
  47. PLoS One. 2016 Apr 14;11(4):e0153361 [PMID: 27077375]
  48. J R Soc Interface. 2015 Feb 6;12(103): [PMID: 25505137]
  49. Nucleic Acids Res. 2022 Jan 7;50(D1):D571-D577 [PMID: 34850161]
  50. FEMS Microbiol Lett. 2016 Feb;363(4): [PMID: 26755501]
  51. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6852-7 [PMID: 20351260]
  52. Virology. 2015 Mar;477:110-118 [PMID: 25708539]
  53. Appl Environ Microbiol. 2018 May 1;84(10): [PMID: 29549100]
  54. EMBO J. 2019 Feb 1;38(3): [PMID: 30606715]
  55. Front Mol Biosci. 2022 May 09;9:907452 [PMID: 35615740]
  56. Appl Environ Microbiol. 2018 Nov 15;84(23): [PMID: 30242010]
  57. Appl Microbiol Biotechnol. 2017 Apr;101(8):3103-3119 [PMID: 28337580]
  58. Appl Environ Microbiol. 2016 Sep 16;82(19):5763-74 [PMID: 27422842]
  59. Chem Biol Interact. 2008 Jan 30;171(2):236-49 [PMID: 17434157]
  60. Arch Virol. 2018 Sep;163(9):2555-2559 [PMID: 29752557]
  61. Int J Food Microbiol. 2015 Oct 15;211:79-85 [PMID: 26186121]
  62. J Bacteriol. 1995 May;177(10):2914-7 [PMID: 7751306]
  63. BMC Microbiol. 2008 Nov 06;8:191 [PMID: 18990211]
  64. Front Microbiol. 2019 Nov 15;10:2649 [PMID: 31803168]
  65. Appl Microbiol Biotechnol. 2019 Jun;103(11):4279-4289 [PMID: 30997551]
  66. Nature. 2016 May 18;533(7603):346-52 [PMID: 27193680]
  67. Am J Clin Nutr. 1979 Jan;32(1):219-28 [PMID: 104614]
  68. Pol J Microbiol. 2010;59(3):145-55 [PMID: 21033576]
  69. Annu Rev Food Sci Technol. 2019 Mar 25;10:151-172 [PMID: 30633564]
  70. J Biol Chem. 2008 May 2;283(18):12415-25 [PMID: 18025086]
  71. Protein Sci. 2023 Nov;32(11):e4792 [PMID: 37774136]
  72. Crit Rev Food Sci Nutr. 2022;62(28):7677-7702 [PMID: 33939559]
  73. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  74. Nanomaterials (Basel). 2020 Mar 11;10(3): [PMID: 32168802]
  75. Viruses. 2018 Jul 27;10(8): [PMID: 30060520]
  76. J Bacteriol. 2010 Apr;192(7):1921-8 [PMID: 20118263]
  77. Bioinformatics. 2011 Apr 1;27(7):1009-10 [PMID: 21278367]

Grants

  1. R01 GM129325/NIGMS NIH HHS
  2. FNRS-CDR J.0144.20/Fonds De La Recherche Scientifique - FNRS (FNRS)
  3. ARC N 17/22-084/Communaute francaise de Belgique
  4. FNRS 1.A356.21/Fonds De La Recherche Scientifique - FNRS (FNRS)

MeSH Term

Bacillus cereus
Bacillus Phages
Myoviridae
Viral Tail Proteins
Virus Attachment
Host Specificity
Polysaccharides

Chemicals

Viral Tail Proteins
Polysaccharides

Word Cloud

Created with Highcharts 10.0.0Vp4Deep-Blueadsorptionproteinsbaseplatetailmyophagesphagehostereceptor-bindinggroupprocessphagesicompriseshubRBPstwomembersmoduleGp185Gp112bindstrainsconfirminghostsalsoshowncarbohydrate-bindingGp119potentialtailedmacromolecularstructurelocateddistalpartdirectlyimplicatedrecognitioncellwallpenetrationcontractiletailscomplexcentralpuncturingdevicewedgesconnectingworkinvestigatedstructuresfunctionsadsorption-associatedinfectinginterestresidesdifferentspectrumdespitehighdegreesimilarityAnalysisrevealedgeneordersimilarA511AmongstructuralhomologC-terminalvariablepartsableimplicationInterestinglyrequirepolysaccharideslikelyboundarsenalmodulesCBMsphages'baseplatessuggestingrelysolelyparticularBWharboringCBMfoldeffectivelybacterialcellsFinallyshowedputativeGp189Gp110bacteriolyticactivitysupportsroleectolysinslocallydegradingpeptidoglycanfacilitategenomeinjectionIMPORTANCE:closelyrelatedspeciesincludingpathogenicgtoxinsrepresentfrequentlyreportedcausefoodpoisoningoutbreaksEuropeanlevelBacteriophageresearchundergoingremarkablerenaissancebiocontroldetectionpathogensprimarysitephage-bacteriainteractionsprerequisitesuccessfulinfectioncrucialneedsinvestigationcurrentknowledgecurrentlylimitedsiphovirusestectivirusespresentfirstinsightspreyinghighlightingimportancepolysaccharidemoietiesbindingsurfacewedgeDecipheringmachinerytargetingBacilluscereusectolysinprotein

Similar Articles

Cited By