Phytoextraction Options.

Alla Samarska, Oliver Wiche
Author Information
  1. Alla Samarska: Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/G��rlitz University of Applied Sciences, Zittau, Germany.
  2. Oliver Wiche: Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/G��rlitz University of Applied Sciences, Zittau, Germany. oliver.wiche@hszg.de.

Abstract

Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.

Keywords

References

  1. Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavas I, ��nay A, Abdel-Daim MM, Jumah M, Hasanuzzaman M, Kalderis D (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12(5):1927. https://doi.org/10.3390/su12051927 [DOI: 10.3390/su12051927]
  2. Charazi��ska S, Burszta-Adamiak E, Lochy��ski P (2022) The efficiency of removing heavy metal ions from industrial electropolishing wastewater using natural materials. Sci Rep 12(1):17766. https://doi.org/10.1038/s41598-022-22466-9 [DOI: 10.1038/s41598-022-22466-9]
  3. Islam S, Islam S, Habibullah-AL-mamun, Islam SA, Eaton DW (2016) Total and dissolved metals in the industrial wastewater: a case study from Dhaka Metropolitan, Bangladesh. Environ Nanotechnol Monit Manag 5:74���80. https://doi.org/10.1016/j.enmm.2016.04.001 [DOI: 10.1016/j.enmm.2016.04.001]
  4. Qasem NAA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4:36. https://doi.org/10.1038/s41545-021-00127-0 [DOI: 10.1038/s41545-021-00127-0]
  5. Sanz RM, Mill��n Gabet V, Gonzalez JL (2021) Inputs of total and labile dissolved metals from six facilities continuously discharging treated wastewaters to the marine environment of Gran Canaria Island (Canary Islands, Spain). Int J Environ Res Public Health 18(21):11582. https://doi.org/10.3390/ijerph182111582 [DOI: 10.3390/ijerph182111582]
  6. Zhou Q, Yang N, Li Y, Ren B, Ding X, Bian H, Yao X (2020) Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob Ecol Conserv 22:e00925. https://doi.org/10.1016/j.gecco.2020.e00925 [DOI: 10.1016/j.gecco.2020.e00925]
  7. Qadir M (2022) Chapter 13 - Potential of municipal wastewater for resource recovery and reuse. In: Water and climate change sustainable development, environmental and policy issues. United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamilton, pp 263���271. https://doi.org/10.1016/B978-0-323-99875-8.00013-6 [DOI: 10.1016/B978-0-323-99875-8.00013-6]
  8. White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7):1073���1080. https://doi.org/10.1093/aob/mcq085 [DOI: 10.1093/aob/mcq085]
  9. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143 [DOI: 10.3389/fpls.2015.01143]
  10. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. https://doi.org/10.3389/fpls.2020.00359 [DOI: 10.3389/fpls.2020.00359]
  11. Sager M, Wiche O (2024) Rare earth elements (REE): origins, dispersion, and environmental implications: a comprehensive review. Environment 11(2):24. https://doi.org/10.3390/environments11020024 [DOI: 10.3390/environments11020024]
  12. S��nmez VZ, Akarsu C, Sivri N (2023) The new era hypothesis of coastal degradation: G(s) elements-gallium, gadolinium, and germanium. Environ Geochem Health 45:8803���8822. https://doi.org/10.1007/s10653-023-01743-0 [DOI: 10.1007/s10653-023-01743-0]
  13. Jones ER, van Vliet MTH, Qadir M, Bierkens MFP (2021) Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst Sci Data 13(2):237���254. https://doi.org/10.5194/essd-13-237-2021 [DOI: 10.5194/essd-13-237-2021]
  14. Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK (2021) Constructed wetland, an eco-technology for wastewater treatment: a review on types of wastewater treated and components of the technology (macrophyte, biofilm and substrate). J Environ Manag 283:111986. https://doi.org/10.1016/j.jenvman.2021.111986 [DOI: 10.1016/j.jenvman.2021.111986]
  15. Mar��n-Mu��iz JL, Sandoval Herazo LC, L��pez-M��ndez MC, Sandoval-Herazo M, Mel��ndez-Armenta R��, Gonz��lez-Moreno HR, Zamora S (2023) Treatment wetlands in Mexico for control of wastewater contaminants: a review of experiences during the last twenty-two years. PRO 11(2):359. https://doi.org/10.3390/pr11020359 [DOI: 10.3390/pr11020359]
  16. Akinnawo SO (2023) Eutrophication: causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ Chall 12:100733. https://doi.org/10.1016/j.envc.2023.100733 [DOI: 10.1016/j.envc.2023.100733]
  17. Revollar S, Vilanova R, Vega P, Francisco M, Meneses M (2020) Wastewater treatment plant operation: simple control schemes with a holistic perspective. Sustainability 12(3):768. https://doi.org/10.3390/su12030768 [DOI: 10.3390/su12030768]
  18. Preisner M, Neverova-Dziopak E, Kowalewski Z (2021) Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach. Ambio 50(2):413���424. https://doi.org/10.1007/s13280-020-01346-4 [DOI: 10.1007/s13280-020-01346-4]
  19. Wu H, Wang R, Yan P et al (2023) Constructed wetlands for pollution control. Nat Rev Earth Environ 4:218���234. https://doi.org/10.1038/s43017-023-00395-z [DOI: 10.1038/s43017-023-00395-z]
  20. Dinh T, Dobo Z, Kovacs H (2022a) Phytomining of noble metals ��� A review. Chemosphere 286(Pt 3):131805. https://doi.org/10.1016/j.chemosphere.2021.131805 [DOI: 10.1016/j.chemosphere.2021.131805]
  21. Dinh T, Dobo Z, Kovacs H (2022b) Phytomining of rare earth elements ��� A review. Chemosphere 297:134259. https://doi.org/10.1016/j.chemosphere.2022.134259 [DOI: 10.1016/j.chemosphere.2022.134259]
  22. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals--concepts and applications. Chemosphere 91(7):869���881. https://doi.org/10.1016/j.chemosphere.2013.01.075 [DOI: 10.1016/j.chemosphere.2013.01.075]
  23. Tan HW, Pang YL, Lim S, Chong WC (2023) A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environ Technol Innov 30:103043. https://doi.org/10.1016/j.eti.2023.103043 [DOI: 10.1016/j.eti.2023.103043]
  24. Bernal MP, G��mez X, Chang R, Arco-L��zaro E, Clemente R (2019) Strategies for the use of plant biomass obtained in the phytostabilisation of trace-element-contaminated soils. Biomass Bioenergy 126:220���230. https://doi.org/10.1016/j.biombioe.2019.05.017 [DOI: 10.1016/j.biombioe.2019.05.017]
  25. Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49���57. https://doi.org/10.1016/0375-6742(77)90074-7 [DOI: 10.1016/0375-6742(77)90074-7]
  26. Baker AJM (1981) Accumulators and excluders strategies in response of plants to heavy metals. J Plant Nutr 3(1���4):643���654. https://doi.org/10.1080/01904168109362867 [DOI: 10.1080/01904168109362867]
  27. Tognacchini A, Salinitro M, Puschenreiter M et al (2020) Root foraging and avoidance in hyperaccumulator and excluder plants: a rhizotron experiment. Plant Soil 450:287���302. https://doi.org/10.1007/s11104-020-04488-2 [DOI: 10.1007/s11104-020-04488-2]
  28. Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67(1���3):407���415. https://doi.org/10.1016/S0375-6742(99)00055-2 [DOI: 10.1016/S0375-6742(99)00055-2]
  29. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, p 384 [DOI: 10.1079/9780851992365.0000]
  30. Kushwaha P, Neilson JW, Maier RM, Babst-Kostecka A (2022) Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Sci Total Environ 803:150006. https://doi.org/10.1016/j.scitotenv.2021.150006 [DOI: 10.1016/j.scitotenv.2021.150006]
  31. Valitutto RS, Sella SM, Silva-Filho EV et al (2007) Accumulation of metals in macrophytes from water reservoirs of a power supply plant, Rio de Janeiro State, Brazil. Water Air Soil Pollut 178:89���102. https://doi.org/10.1007/s11270-006-9154-6 [DOI: 10.1007/s11270-006-9154-6]
  32. Vymazal J (2014) Constructed wetlands for treatment of industrial wastewaters: A review. Ecol Eng 73:724���751. https://doi.org/10.1016/j.ecoleng.2014.09.034 [DOI: 10.1016/j.ecoleng.2014.09.034]
  33. Younas F, Niazi NK, Bibi I, Afzal M, Hussain K, Shahid M, Aslam Z, Bashir S, Hussain MM, Bundschuh J (2022) Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. J Hazard Mater 422:126926. https://doi.org/10.1016/j.jhazmat.2021.126926 [DOI: 10.1016/j.jhazmat.2021.126926]
  34. LaMartina EL, Mohaimani AA, Newton RJ (2021) Urban wastewater bacterial communities assemble into seasonal steady states. Microbiome 9:116. https://doi.org/10.1186/s40168-021-01038-5 [DOI: 10.1186/s40168-021-01038-5]
  35. Sichler TC, Montag D, Barjenbruch M et al (2022) Variation of the element composition of municipal sewage sludges in the context of new regulations on phosphorus recovery in Germany. Environ Sci Eur 34:84. (2022). https://doi.org/10.1186/s12302-022-00658-4 [DOI: 10.1186/s12302-022-00658-4]
  36. Huber M, Athanasiadis K, Helmreich B (2020) Phosphorus removal potential at sewage treatment plants in Bavaria ��� a case study. Environ Chall 1:100008. https://doi.org/10.1016/j.envc.2020.100008 [DOI: 10.1016/j.envc.2020.100008]
  37. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48���65. https://doi.org/10.1016/j.scitotenv.2006.09.014 [DOI: 10.1016/j.scitotenv.2006.09.014]
  38. Sossalla NA, Nivala J, Reemtsma T, Schlichting R, K��nig M, Forquet N, van Afferden M, M��ller RA, Escher BI (2021) Removal of micropollutants and biological effects by conventional and intensified constructed wetlands treating municipal wastewater. Water Res 201:117349. https://doi.org/10.1016/j.watres.2021.117349 [DOI: 10.1016/j.watres.2021.117349]
  39. Vriens B, Voegelin A, Hug SJ, Kaegi R, Winkel LHE, Buser AM, Berg M (2017) Quantification of element fluxes in wastewaters: a nationwide survey in Switzerland. Environ Sci Technol 51(19):10943���10953. https://doi.org/10.1021/acs.est.7b01731 [DOI: 10.1021/acs.est.7b01731]
  40. Pratiwi NI, Mukimin A, Zen N, Septarina I (2021) Integration of electrocoagulation, adsorption and wetland technology for jewelry industry wastewater treatment. Sep Purif Technol 279:119690. https://doi.org/10.1016/j.seppur.2021.119690 [DOI: 10.1016/j.seppur.2021.119690]
  41. Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Noble metals in medicine: latest advances. Coord Chem Rev 284:329���350. https://doi.org/10.1016/j.ccr.2014.08.002 [DOI: 10.1016/j.ccr.2014.08.002]
  42. Nakhjiri AT, Sanaeepur H, Amooghin AE, Shirazi MMA (2022) Recovery of precious metals from industrial wastewater towards resource recovery and environmental sustainability: A critical review. Desalination 527:115510. https://doi.org/10.1016/j.desal.2021.115510 [DOI: 10.1016/j.desal.2021.115510]
  43. Wang J, Li S (2022) Applications of rare earth elements in cancer: evidence mapping and scientometric analysis. Front Med 9:946100. https://doi.org/10.3389/fmed.2022.946100 [DOI: 10.3389/fmed.2022.946100]
  44. Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14(12���13):1139���1145. https://doi.org/10.1016/j.jclepro.2004.09.006 [DOI: 10.1016/j.jclepro.2004.09.006]
  45. Ayora C, Mac��as F, Torres E, Lozano A, Carrero S, Nieto JM, P��rez-L��pez R, Fern��ndez-Mart��nez A, Castillo-Michel H (2016) Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage. Environ Sci Technol 50(15):8255���8262. https://doi.org/10.1021/acs.est.6b02084 [DOI: 10.1021/acs.est.6b02084]
  46. Cao Y, Shao P, Chen Y, Zhou X, Yang L, Shi H, Yu K, Luo X, Luo X (2021) A critical review of the recovery of rare earth elements from wastewater by algae for resources recycling technologies. Resour Conserv Recycl 169:105519. https://doi.org/10.1016/j.resconrec.2021.105519 [DOI: 10.1016/j.resconrec.2021.105519]
  47. Hermassi M, Granados M, Valderrama C, Ayora C, Cortina JL (2022) Recovery of rare earth elements from acidic mine waters: an unknown secondary resource. Sci Total Environ 810:152258. https://doi.org/10.1016/j.scitotenv.2021.152258 [DOI: 10.1016/j.scitotenv.2021.152258]
  48. Geng Y, Cui D, Yang L, Xiong Z, Pavlostathis SG, Shao P, Zhang Y, Luo X, Luo S (2023) Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. Microalgae. J Hazard Mater 423, Part A:127000. https://doi.org/10.1016/j.jhazmat.2021.127000 [DOI: 10.1016/j.jhazmat.2021.127000]
  49. L��pez J, Reig M, Gibert O, Cortina JL (2019) Integration of nanofiltration membranes in recovery options of rare earth elements from acidic mine waters. J Clean Prod 210:1249���1260. https://doi.org/10.1016/j.jclepro.2018.11.096 [DOI: 10.1016/j.jclepro.2018.11.096]
  50. Ol��as M, C��novas CR, Basallote MD, Lozano A (2018) Geochemical behaviour of rare earth elements (REE) along a river reach receiving inputs of acid mine drainage. Chem Geol 493:468���477. https://doi.org/10.1016/j.chemgeo.2018.06.029 [DOI: 10.1016/j.chemgeo.2018.06.029]
  51. Pinto J, Henriques B, Soares J, Costa M, Dias M, Fabre E, Lopes CB, Vale C, Pinheiro-Torres J, Pereira E (2020) A green method based on living macroalgae for the removal of rare-earth elements from contaminated waters. J Environ Manag 263:110376. https://doi.org/10.1016/j.jenvman.2020.110376 [DOI: 10.1016/j.jenvman.2020.110376]
  52. Sun Y, Lu T, Pan Y, Shi M, Ding D, Ma Z, Liu J, Yuan Y, Fei L, Sun Y (2022) Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater. Environ Sci Ecotechnol 12:100204. https://doi.org/10.1016/j.ese.2022.100204 [DOI: 10.1016/j.ese.2022.100204]
  53. Zhang Y, Xiong Z, Yang L, Ren Z, Shao P, Shi H, Xiao X, Pavlostathis SG, Fang L, Luo X (2019) Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Res 166:115076. https://doi.org/10.1016/j.watres.2019.115076 [DOI: 10.1016/j.watres.2019.115076]
  54. Royer-Lavall��e A, Neculita CM, Coudert L (2020) Removal and potential recovery of rare earth elements from mine water. Journal of Industrial and Engineering Chemistry 89:47���57. https://doi.org/10.1016/j.jiec.2020.06.010
  55. Kabata-Pendias A (2000) Trace elements in soils and plants.3rd edn. CRC Press, Boca Raton. https://doi.org/10.1201/9781420039900 [DOI: 10.1201/9781420039900]
  56. Mulchandani A, Westerhoff P (2016) Recovery opportunities for metals and energy from sewage sludges. Bioresour Technol 215:215���226. https://doi.org/10.1016/j.biortech.2016.03.075 [DOI: 10.1016/j.biortech.2016.03.075]
  57. Rentsch L, Aubel I, Schreiter N, Bertau M (2016) PhytoGerm: extraction of germanium from biomass ��� an economic pre-feasibility study. J Bus Chem 13:47���58
  58. Ghimire U, Nandimandalam H, Martinez-Guerra E, Gude VG (2019) Wetlands for wastewater treatment. Water Environ Res 91(10):1378���1389. https://doi.org/10.1002/wer.1232 [DOI: 10.1002/wer.1232]
  59. Martinez-Guerra E, Ghimire U, Nandimandalam H, Norris A, Gude VG (2020) Wetlands for environmental protection. Water Environ Res 92(10):1677���1694. https://doi.org/10.1002/wer.1422 [DOI: 10.1002/wer.1422]
  60. Parde D, Patwa A, Shukla A, Vijay R, Killedar DJ, Kumar R (2021) A review of constructed wetland on type, treatment and technology of wastewater. Environ Technol Innov 21:101261. https://doi.org/10.1016/j.eti.2020.101261 [DOI: 10.1016/j.eti.2020.101261]
  61. Retta B, Coppola E, Ciniglia C, Grilli E (2023) Constructed wetlands for the wastewater treatment: a review of Italian case studies. Appl Sci 13(10):6211. https://doi.org/10.3390/app13106211 [DOI: 10.3390/app13106211]
  62. Vymazal J (2022) The historical development of constructed wetlands for wastewater treatment. Land 11(2):174. https://doi.org/10.3390/land11020174 [DOI: 10.3390/land11020174]
  63. Ilyas H, van Hullebusch ED (2019) Role of design and operational factors in the removal of pharmaceuticals by constructed wetlands. Water 11:1���24. https://doi.org/10.3390/w11112356 [DOI: 10.3390/w11112356]
  64. Ilyas H, van Hullebusch ED (2020) The influence of design and operational factors on the removal of personal care products by constructed wetlands. Water 12(5):1���20. https://doi.org/10.3390/w12051367 [DOI: 10.3390/w12051367]
  65. Greenway M, de Rozari P, Hanandeh AE (2022) Plant growth and nutrient accumulation in Melaleuca quinquenervia and Cymbopogon citratus treating high strength sewage effluent in constructed wetland systems with biochar media. Ecol Eng 180:106667. https://doi.org/10.1016/j.ecoleng.2022.106667 [DOI: 10.1016/j.ecoleng.2022.106667]
  66. Ilyas H, Masih I (2017) The performance of the intensified constructed wetlands for organic matter and nitrogen removal: a review. J Environ Manag 198(Pt 1):372���383. https://doi.org/10.1016/j.jenvman.2017.04.098 [DOI: 10.1016/j.jenvman.2017.04.098]
  67. Guittonny-Philippe A, Masotti V, H��hener P, Boudenne JL, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1���16. https://doi.org/10.1016/j.envint.2013.11.016 [DOI: 10.1016/j.envint.2013.11.016]
  68. Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ Pollut 158(12):3447���3461. https://doi.org/10.1016/j.envpol.2010.08.018 [DOI: 10.1016/j.envpol.2010.08.018]
  69. Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19(2):105���116. https://doi.org/10.1016/j.mineng.2005.08.006 [DOI: 10.1016/j.mineng.2005.08.006]
  70. Sochacki A, Yadav AK, Srivastava P, Kumar N, Fitch MW, Mohanty A (2018) Chapter 11 Constructed wetlands for metals: removal mechanism and analytical challenges. In: Constructed wetlands for industrial wastewater treatment. https://doi.org/10.1002/9781119268376.ch11 [DOI: 10.1002/9781119268376.ch11]
  71. U.S. EPA (2000) Wastewater technology fact sheet free water surface wetlands. U.S. EPA, OWM, Washington, DC
  72. Zhang BY, Zhenga JS, Sharpb RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci 2:1315���1325. https://doi.org/10.1016/j.proenv.2010.10.142 [DOI: 10.1016/j.proenv.2010.10.142]
  73. Li Q, Long Z, Wang H, Zhang G (2021a) Functions of constructed wetland animals in water environment protection ��� a critical review. Sci Total Environ 760:144038. https://doi.org/10.1016/j.scitotenv.2020.144038 [DOI: 10.1016/j.scitotenv.2020.144038]
  74. Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530���549. https://doi.org/10.3390/w2030530 [DOI: 10.3390/w2030530]
  75. Vymazal J (2013b) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res 47(14):4795���4811. https://doi.org/10.1016/j.watres.2013.05.029 [DOI: 10.1016/j.watres.2013.05.029]
  76. Kadlec RH, Wallace S (2009) Treatment wetlands.2nd edn. CRC Press, Boca Raton, FL
  77. Sharma R, Vymazal J, Malaviya P (2021) Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Sci Total Environ 777:146044. https://doi.org/10.1016/j.scitotenv.2021.146044 [DOI: 10.1016/j.scitotenv.2021.146044]
  78. Saeed T, Alam MK, Miah MJ, Majed N (2021) Removal of heavy metals in subsurface flow constructed wetlands: application of effluent recirculation. Environ Sustain Ind 12:100146. https://doi.org/10.1016/j.indic.2021.100146 [DOI: 10.1016/j.indic.2021.100146]
  79. Huong M, Costa DT, Van Hoi B (2020) Enhanced removal of nutrients and heavy metals from domestic-industrial wastewater in an academic campus of Hanoi using modified hybrid constructed wetlands. Water Sci Technol J Int Assoc Water Pollut Res 82(10):1995���2006. https://doi.org/10.2166/wst.2020.468 [DOI: 10.2166/wst.2020.468]
  80. Ali Z, Mohammad A, Riaz Y, Quraishi UM, Malik RN (2018) Treatment efficiency of a hybrid constructed wetland system for municipal wastewater and its suitability for crop irrigation. Int J Phytoremediation 20(11):1152���1161. https://doi.org/10.1080/15226514.2018.1460311 [DOI: 10.1080/15226514.2018.1460311]
  81. Bydalek F, Ifayemi D, Reynolds L, Barden R, Kasprzyk-Hordern B, Wenk J (2023) Microplastic dynamics in a free water surface constructed wetland. Sci Total Environ 858, Part 3:160113. https://doi.org/10.1016/j.scitotenv.2022.160113 [DOI: 10.1016/j.scitotenv.2022.160113]
  82. Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90(11):3451���3457. https://doi.org/10.1016/j.jenvman.2009.05.026 [DOI: 10.1016/j.jenvman.2009.05.026]
  83. Liu J, Dong B, Cui Y, Zhou W, Liu F (2020a) An exploration of plant characteristics for plant species selection in wetlands. Ecol Eng 143:105674. https://doi.org/10.1016/j.ecoleng.2019.105674 [DOI: 10.1016/j.ecoleng.2019.105674]
  84. Liu F, Sun L, Wan J, Shen L, Yu Y, Hu L, Zhou Y (2020b) Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. J Environ Sci (China) 89:252���263. https://doi.org/10.1016/j.jes.2019.08.015 [DOI: 10.1016/j.jes.2019.08.015]
  85. Li Q, Xing Y, Fu X, Ji L, Li T, Wang J, Chen G, Qi Z, Zhang Q (2021b) Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress - microbial diversity and metabolomics analyses. Ecotoxicol Environ Saf 212:112016. https://doi.org/10.1016/j.ecoenv.2021.112016 [DOI: 10.1016/j.ecoenv.2021.112016]
  86. Vymazal J (2013a) Emergent plants used in free water surface constructed wetlands: A review. Ecol Eng 61(Part B):582���592. https://doi.org/10.1016/j.ecoleng.2013.06.023 [DOI: 10.1016/j.ecoleng.2013.06.023]
  87. Dorman L, Castle JW, Rodgers Jr JH (2009) Performance of a pilot-scale constructed wetland system for treating simulated ash basin water. Chemosphere 75(7):939���947. https://doi.org/10.1016/j.chemosphere.2009.01.012 [DOI: 10.1016/j.chemosphere.2009.01.012]
  88. Goulet RR, Pick FR (2009) Changes in dissolved and total Fe and Mn in a young constructed wetland: implications for retention performance. Ecol Eng 17(4):373���384. https://doi.org/10.1016/S0925-8574(00)00161-0 [DOI: 10.1016/S0925-8574(00)00161-0]
  89. Mozaffari M-H, Shafiepour E, Mirbagheri SA, Rakhshandehroo G, Wallace S, Stefanakis AI (2021) Hydraulic characterization and removal of metals and nutrients in an aerated horizontal subsurface flow ���racetrack��� wetland treating primary-treated oil industry effluent. Water Res 200:117220. https://doi.org/10.1016/j.watres.2021.117220 [DOI: 10.1016/j.watres.2021.117220]
  90. John Y, Langergraber G, Adyel Jr TM, V. E. D. (2020) Aeration intensity simulation in a saturated vertical up-flow constructed wetland. Sci Total Environ 708:134793. https://doi.org/10.1016/j.scitotenv.2019.134793 [DOI: 10.1016/j.scitotenv.2019.134793]
  91. de Souza MP, Huang CP, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209(2):259���263. https://doi.org/10.1007/s004250050630 [DOI: 10.1007/s004250050630]
  92. Schwabe R, Anke MR, Szyma��ska K, Wiche O, Tischler D (2018) Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method. Res Microbiol 169(10):598���607. https://doi.org/10.1016/j.resmic.2018.08.002 [DOI: 10.1016/j.resmic.2018.08.002]
  93. Saeed T, Yadav AK, Miah MJ (2022) Influence of electrodes and media saturation in horizontal flow wetlands employed for municipal sewage treatment: A comparative study. Environ Technol Innov 25:102160. https://doi.org/10.1016/j.eti.2021.102160 [DOI: 10.1016/j.eti.2021.102160]
  94. Liu F, Sun L, Wan J, Shen L, Yu Y, Hu L, Zhou Y (2020) Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. Journal of environmental sciences (China) 89:252���263. https://doi.org/10.1016/j.jes.2019.08.015
  95. Galal TM, Eid EM, Dakhil MA, Hassan LM (2018) Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediation 20(5):440���447. https://doi.org/10.1080/15226514.2017.1365343 [DOI: 10.1080/15226514.2017.1365343]
  96. Aurangzeb N, Nisa S, Bibi Y, Javed F, Hussain F (2014) Phytoremediation potential of aquatic herbs from steel foundry effluent. Braz J Chem Eng 2014(31):881���886. https://doi.org/10.1590/0104-6632.20140314s00002734 [DOI: 10.1590/0104-6632.20140314s00002734]
  97. Prasad B, Maiti D (2016) Comparative study of metal uptake by Eichhornia crassipes growing in ponds from mining and nonmining areas���A field study. Biorem J 2016(20):144���152. https://doi.org/10.1080/10889868.2015.1113924 [DOI: 10.1080/10889868.2015.1113924]
  98. Rezania S, Din MF, Taib SM, Dahalan FA, Songip AR, Singh L, Kamyab H (2016) The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. Int J Phytoremediation 18(7):679���685. https://doi.org/10.1080/15226514.2015.1130018 [DOI: 10.1080/15226514.2015.1130018]
  99. Romanova TE, Shuvaeva OV, Belchenko LA (2016) Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. Int J Phytoremediation 18(2):190���194. https://doi.org/10.1080/15226514.2015.1073674 [DOI: 10.1080/15226514.2015.1073674]
  100. Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediation 19(1):87���96. https://doi.org/10.1080/15226514.2016.1216078 [DOI: 10.1080/15226514.2016.1216078]
  101. Rai P (2019) Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ Technol Innov 15:100393. https://doi.org/10.1016/j.eti.2019.100393 [DOI: 10.1016/j.eti.2019.100393]
  102. Zhang X, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182(2):421���428. https://doi.org/10.1111/j.1469-8137.2008.02758.x [DOI: 10.1111/j.1469-8137.2008.02758.x]
  103. Abhayawardhana M, Bandara N, Rupasinge S (2019) Removal of heavy metals and nutrients from municipal wastewater using Salvinia molesta and Lemna gibba. J Trop For Environ 9(2). https://doi.org/10.31357/jtfe.v9i2.4469
  104. Khellaf N, Zerdaoui M (2009) Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresour Technol 100(23):6137���6140. https://doi.org/10.1016/j.biortech.2009.06.043 [DOI: 10.1016/j.biortech.2009.06.043]
  105. Lesage E, Mundia C, Rousseau DPL et al (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30(4):320���325. https://doi.org/10.1016/j.ecoleng.2007.04.007 [DOI: 10.1016/j.ecoleng.2007.04.007]
  106. Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S, Singh SN (2001) Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bull Environ Contam Toxicol 67(2):246���256. https://doi.org/10.1007/s001280117 [DOI: 10.1007/s001280117]
  107. Ucer A, Uyan��k A, Kutbay HG (2013) Removal of heavy metals using Myriophyllum verticillatum (whorl-leaf watermilfoil) in a hydroponic system. Ekoloji 22(87):1���9. https://doi.org/10.5053/ekoloji.2013.8 [DOI: 10.5053/ekoloji.2013.8]
  108. Samecka-Cymerman A, Stepien D, Kempers AJ (2004) Efficiency in removing pollutants by constructed wetland purification systems in Poland. J Toxicol Environ Health A 67(4):265���275. https://doi.org/10.1080/15287390490273532 [DOI: 10.1080/15287390490273532]
  109. Wiche O, Tischler D, Fauser C, Lodemann J, Heilmeier H (2017a) Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea. Int J Phytoremediation 19:746���754. https://doi.org/10.1080/15226514.2017.1284752 [DOI: 10.1080/15226514.2017.1284752]
  110. Wiche O, Zertani V, Hentschel W, Achtziger R, Midula P (2017b) Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). J Geochem Explor 175:120���129. https://doi.org/10.1016/j.gexplo.2017.01.008 [DOI: 10.1016/j.gexplo.2017.01.008]
  111. Wiche O, Sz��kely B, Moschner C, Heilmeier H (2018a) Germanium in the soil-plant system-a review. Environ Sci Pollut Res Int 25(32):31938���31956. https://doi.org/10.1007/s11356-018-3172-y [DOI: 10.1007/s11356-018-3172-y]
  112. Wiche O, Heilmeier H (2016) Germanium (Ge) and rare earth element (REE) accumulation in selected energy crops cultivated on two different soils. Miner Eng 92:208���215. https://doi.org/10.1016/j.mineng.2016.03.023 [DOI: 10.1016/j.mineng.2016.03.023]
  113. Moogouei R, Chen Y (2020) Removal of cesium, lead, nitrate and sodium from wastewater using hydroponic constructed wetland. Int J Environ Sci Technol 17:3495���3502. https://doi.org/10.1007/s13762-020-02627-x [DOI: 10.1007/s13762-020-02627-x]
  114. Mazumdar K, Das S (2015) Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from paper mill contaminated site in north East India. Environ Sci Pollut Res 22:701���710. https://doi.org/10.1007/s11356-014-3377-7 [DOI: 10.1007/s11356-014-3377-7]
  115. Bonanno G (2011) Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf 74(4):1057���1064. https://doi.org/10.1016/j.ecoenv.2011.01.018 [DOI: 10.1016/j.ecoenv.2011.01.018]
  116. Ha NT, Sakakibara M, Sano S (2011) Accumulation of indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresour Technol 102(3):2228���2234. https://doi.org/10.1016/j.biortech.2010.10.014 [DOI: 10.1016/j.biortech.2010.10.014]
  117. Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean (Weinh) 39(8):735���741. https://doi.org/10.1002/clen.201000488 [DOI: 10.1002/clen.201000488]
  118. Woraharn S, Meeinkuirt W, Phusantisampan T et al (2021) Rhizofiltration of cadmium and zinc in hydroponic systems. Water Air Soil Pollut 232:204. https://doi.org/10.1007/s11270-021-05156-6 [DOI: 10.1007/s11270-021-05156-6]
  119. Saleh HM, Aglan RF, Mahmoud HH (2019) Ludwigia stolonifera for remediation of toxic metals from simulated wastewater. Chem Ecol 35(2):164���178. https://doi.org/10.1080/02757540.2018.1546296 [DOI: 10.1080/02757540.2018.1546296]
  120. Rana V, Maiti SK (2018) Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Environ Monit Assess 190(6):328. https://doi.org/10.1007/s10661-018-6705-4 [DOI: 10.1007/s10661-018-6705-4]
  121. Rai UN, Upadhyay AK, Singh NK, Dwivedi S, Tripathi RD (2015) Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecol Eng 81:115���122. https://doi.org/10.1016/j.ecoleng.2015.04.039 [DOI: 10.1016/j.ecoleng.2015.04.039]
  122. Kafil M, Boroomand Nasab S, Moazed H, Bhatnagar A (2019) Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. Int J Phytoremediation 21(2):92���100. https://doi.org/10.1080/15226514.2018.1474443 [DOI: 10.1080/15226514.2018.1474443]
  123. Mal J, Rangabhashiyam S (2021) Bioremediation and phytoremediation as the environmentally sustainable approach for the elimination of toxic heavy metals. In: Kaleekkal NJ, Mural PKS, Vigneswaran S, Ghosh U (eds) Sustainable technologies for water and wastewater treatment. CRC Press, Boca Raton, FL, pp 227���258. https://doi.org/10.1201/9781003052234-17 [DOI: 10.1201/9781003052234-17]
  124. Isteni�� D, Bo��i�� G (2021) Short-rotation willows as a wastewater treatment plant: biomass production and the fate of macronutrients and metals. Forests 12(5):554. https://doi.org/10.3390/f12050554 [DOI: 10.3390/f12050554]
  125. Gemeda S, Gabbiye N, Alemu A (2019) Phytoremediation potential of free floating plant species for chromium wastewater: the case of duckweed, water hyacinth, and water lilies. In: Zimale F, Enku Nigussie T, Fanta S (eds) Advances of science and technology. ICAST 2018. Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-030-15357-1_42 [DOI: 10.1007/978-3-030-15357-1_42]
  126. Dushenkov V, Kumar PB, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29(5):1239���1245. https://doi.org/10.1021/es00005a015 [DOI: 10.1021/es00005a015]
  127. Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology (Nature Publishing Company) 13(5):468���474. https://doi.org/10.1038/nbt0595-468
  128. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3(9):359���362. https://doi.org/10.1016/S1360-1385(98)01283-7 [DOI: 10.1016/S1360-1385(98)01283-7]
  129. Heilmeier H, Wiche O (2020) The PCA of phytomining: principles, challenges and achievements. Carpath J Earth Environ Sci 15(1):37���42. https://doi.org/10.26471/cjees/2020/015/106 [DOI: 10.26471/cjees/2020/015/106]
  130. Wiche O, Sz��kely B, Kummer N-A, Moschner C, Heilmeier H (2016a) Effects of intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) on the mobility of target elements for phytoremediation and phytomining in soil solution. Int J Phytoremediation 18:900���907. https://doi.org/10.1080/15226514.2016.1156635 [DOI: 10.1080/15226514.2016.1156635]
  131. Wiche O, Kummer N-A, Heilmeier H (2016b) Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402:235���245. https://doi.org/10.1007/s11104-016-2797-1 [DOI: 10.1007/s11104-016-2797-1]
  132. Marschner H (1995) Mineral nutrition of higher plants.2nd edn. Academic Press, London
  133. van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL (2021) Agromining: farming for metals. Extracting unconventional resources using plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2 [DOI: 10.1007/978-3-030-58904-2]
  134. Wiche O, Pourret O (2023) The role of root carboxylate release on rare earth element (hyper)accumulation in plants ��� a biogeochemical perspective on rhizosphere chemistry. Plant Soil 492:79���90. https://doi.org/10.1007/s11104-023-06177-2 [DOI: 10.1007/s11104-023-06177-2]
  135. L��sch R (2001) Wasserhaushalt der Pflanzen. Quelle und Meyer
  136. Turekian KK (1969) Distribution of elements in the hydrosphere. In 1969 yearbook of science and technology. McGraw Hill, New York
  137. Outridge PM, Noller BN (1991) Accumulation of toxic trace elements by freshwater vascular plants. Rev Environ Contam Toxicol 121:1���63
  138. Wiche O, Moschner C, Schwabe R, Feuerstein U (2018b) Genotypic variation in the accumulation of rare earth element (REE) in Phalaris arundinacea L. (reed canary grass). 20th EGU General Assembly, EGU2018, Proceedings from the conference held 4-13 April, 2018 in Vienna, Austria, p 6695. https://meetingorganizer.copernicus.org/EGU2018/EGU2018-6695.pdf
  139. Rawlence DJ, Whitton JS (1977) Elements in aquatic macrophytes, water, plankton, and sediments surveyed in three North Island lakes. N Z J Mar Freshw Res 11(1):73���93. https://doi.org/10.1080/00288330.1977.9515662 [DOI: 10.1080/00288330.1977.9515662]
  140. Oyewo OA, Adeniyi A, Bopape MF, Onyango MS (2020) Chapter 4 - Heavy metal mobility in surface water and soil, climate change, and soil interactions. In: Oyewo OA, Adeniyi A et al (eds) Climate change and soil interactions. Elsevier, pp 51���88. https://doi.org/10.1016/B978-0-12-818032-7.00004-7 [DOI: 10.1016/B978-0-12-818032-7.00004-7]
  141. Baligar VC, Barber SA (1978) Use of K/Rb Ratio to characterize potassium uptake by plant roots growing in soil. Soil Chem 42(4):575���579. https://doi.org/10.2136/sssaj1978.03615995004200040008x [DOI: 10.2136/sssaj1978.03615995004200040008x]
  142. Lambers H, Oliveira RS (2019) Plant physiological ecology.3rd edn. Springer Science & Business Media [DOI: 10.1007/978-3-030-29639-1]
  143. Jackson LF (1998) Paradigms of metal accumulation in rooted aquatic vascular plants. Sci Total Environ 219(2���3):223���231. https://doi.org/10.1016/S0048-9697(98)00231-9 [DOI: 10.1016/S0048-9697(98)00231-9]
  144. Jackson LJ, Kalff J (1993) Patterns in metal content of submerged aquatic macrophytes: the role of plant growth form. Freshw Biol 29(3):351���359. https://doi.org/10.1111/j.1365-2427.1993.tb00769.x [DOI: 10.1111/j.1365-2427.1993.tb00769.x]
  145. Jackson LJ, Rasmussen JB, Peters RH et al (1991) Empirical relationships between the element composition of aquatic macrophytes and their underlying sediments. Biogeochemistry 12:71���86. https://doi.org/10.1007/BF00001807 [DOI: 10.1007/BF00001807]
  146. Jackson LJ, Rowan DJ, Cornett RJ, Kalff J (1994) Myriophyllum spicatum pumps essential and nonessential trace elements from sediments to epiphytes. Can J Fish Aquat Sci 51(8):1769���1773. https://doi.org/10.1139/f94-178 [DOI: 10.1139/f94-178]
  147. Lemoine DG, Mermillod-Blondin F, Barrat-Segretain MH et al (2012) The ability of aquatic macrophytes to increase root porosity and radial oxygen loss determines their resistance to sediment anoxia. Aquat Ecol 46:191���200. https://doi.org/10.1007/s10452-012-9391-2 [DOI: 10.1007/s10452-012-9391-2]
  148. Soda S, Ike M, Ogasawara Y, Yoshinaka M, Mishima D, Fujita M (2007) Effects of light intensity and water temperature on oxygen release from roots into water lettuce rhizosphere. Water Res 41(2):487���491. https://doi.org/10.1016/j.watres.2006.10.009 [DOI: 10.1016/j.watres.2006.10.009]
  149. Lambers H, de Britto Costa P, Cawthray GR et al (2022) Strategies to acquire and use phosphorus in phosphorus-impoverished and fire-prone environments. Plant Soil 476:133���160. https://doi.org/10.1007/s11104-022-05464-8 [DOI: 10.1007/s11104-022-05464-8]
  150. Xie Y, Yu D (2003) The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquat Bot 75(4):311���321. https://doi.org/10.1016/S0304-3770(03)00003-2 [DOI: 10.1016/S0304-3770(03)00003-2]
  151. Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wie��ner A, K��stner M, M��ller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4(5):403���411. https://doi.org/10.1002/elsc.200420048 [DOI: 10.1002/elsc.200420048]
  152. Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81(6):2173���2181. https://doi.org/10.1128/AEM.03359-14 [DOI: 10.1128/AEM.03359-14]
  153. Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170(2���3):791���797. https://doi.org/10.1016/j.jhazmat.2009.05.035 [DOI: 10.1016/j.jhazmat.2009.05.035]
  154. Dan A, Oka M, Fujii Y, Soda S, Ishigaki T, Takashi Machimura T, Ike M (2017) Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Sci Total Environ 584���585:742���750. https://doi.org/10.1016/j.scitotenv.2017.01.112 [DOI: 10.1016/j.scitotenv.2017.01.112]
  155. Leung HM, Duzgoren-Aydin NS, Au CK, Krupanidhi S, Fung KY, Cheung KC, Wong YK, Peng XL, Ye ZH, Yung KK, Tsui MT (2017) Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ Sci Pollut Res Int 24(10):9079���9088. https://doi.org/10.1007/s11356-016-6756-4 [DOI: 10.1007/s11356-016-6756-4]
  156. Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63(10):1744���1753. https://doi.org/10.1016/j.chemosphere.2005.09.014 [DOI: 10.1016/j.chemosphere.2005.09.014]
  157. Han F, Shan X-Q, Zhang J, Xie Y-N, Pei Z-G, Zhang S-Z, Zhu Y-G, Wen B (2005) Organic acids promote the uptake of lanthanum by barley roots. New Phytol 165:481���492.
  158. Mustapha HI, van Bruggen JJA, Lens PNL (2018) Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria. Int J Phytoremediation 20(1):44���53. https://doi.org/10.1080/15226514.2017.1337062 [DOI: 10.1080/15226514.2017.1337062]
  159. Yasar A, Zaheer A, Tabinda AB, Khan M, Mahfooz Y, Rani S, Siddiqua A (2018) Comparison of reed and water lettuce in constructed wetlands for wastewater treatment. Water Environ Res 90(2):129���135. https://doi.org/10.2175/106143017X14902968254728 [DOI: 10.2175/106143017X14902968254728]
  160. Akowanou AVO, Deguenon HEJ, Balogoun KC, Daouda MMA, Aina MP (2023) The combined effect of three floating macrophytes in domestic wastewater treatment. Sci Afr 20:e01630. https://doi.org/10.1016/j.sciaf.2023.e01630 [DOI: 10.1016/j.sciaf.2023.e01630]
  161. Lee SM, Ryu CM (2021) Algae as new kids in the beneficial plant microbiome. Front Plant Sci 12:599742. https://doi.org/10.3389/fpls.2021.599742 [DOI: 10.3389/fpls.2021.599742]
  162. Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299���304
  163. Bilal M, Rasheed T, Sosa-Hern��ndez JE, Raza A, Nabeel F, Iqbal HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements: a review. Mar Drugs 16(2):65. https://doi.org/10.3390/md16020065 [DOI: 10.3390/md16020065]
  164. Saavedra R, Mu��oz R, Taboada ME, Bolado S (2019) Influence of organic matter and CO supply on bioremediation of heavy metals by Chlorella vulgaris and Scenedesmus almeriensis in a multimetallic matrix. Ecotoxicol Environ Saf 182:109393. https://doi.org/10.1016/j.ecoenv.2019.109393 [DOI: 10.1016/j.ecoenv.2019.109393]
  165. Aleissa KA, Shabana ESI, Al-Masoud FI (2004) Accumulation of uranium by filamentous green algae under natural environmental conditions. J Radioanal Nucl Chem 260:683���687. https://doi.org/10.1023/B:JRNC.0000028232.52884.61 [DOI: 10.1023/B]
  166. Abinandan S, Subashchandrabose SR, Panneerselvan L, Venkateswarlu K, Megharaj M (2019) Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Bioresour Technol 278:9���16. https://doi.org/10.1016/j.biortech.2019.01.053 [DOI: 10.1016/j.biortech.2019.01.053]
  167. Sun Y, Shi M, Lu T, Ding D, Sun Y, Yuan Y (2021) Bio-removal of PtCl complex by Galdieria sulphuraria. Sci Total Environ 796:149021. https://doi.org/10.1016/j.scitotenv.2021.149021 [DOI: 10.1016/j.scitotenv.2021.149021]
  168. Jacinto J, Henriques B, Duarte AC, Vale C, Pereira E (2018) Removal and recovery of critical rare elements from contaminated waters by living Gracilaria gracilis. J Hazard Mater 344:531���538. https://doi.org/10.1016/j.jhazmat.2017.10.054 [DOI: 10.1016/j.jhazmat.2017.10.054]
  169. Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45(1):21���28. https://doi.org/10.1016/S0045-6535(01)00031-5 [DOI: 10.1016/S0045-6535(01)00031-5]
  170. Jia X, Otte ML, Liu Y, Qin L, Tian X, Lu X, Jiang M, Zou Y (2018) Performance of iron plaque of wetland plants for regulating iron, manganese, and phosphorus from agricultural drainage water. Water 2018(10):42. https://doi.org/10.3390/w10010042 [DOI: 10.3390/w10010042]
  171. Liu Z, Tran KQ (2021) A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol Environ Saf 226:112821. https://doi.org/10.1016/j.ecoenv.2021.112821 [DOI: 10.1016/j.ecoenv.2021.112821]
  172. Krisnayanti BD, Anderson CWN, Sukartono S, Afandi Y, Suheri H, Ekawanti A (2016) Phytomining for artisanal gold mine tailings management. Fortschr Mineral 6:84. https://doi.org/10.3390/min6030084 [DOI: 10.3390/min6030084]
  173. Zaffar N, Ferchau E, Heilmeier H, Boldt C, Salcedo LDP, Reitz T, Wiche O (2023) Enrichment and chemical fractionation of plant nutrients, potentially toxic and economically valuable elements in digestate from mesophilic and thermophilic fermentation. Biomass Bioenergy 173:106779. https://doi.org/10.1016/j.biombioe.2023.106779 [DOI: 10.1016/j.biombioe.2023.106779]
  174. Lin L, Xu F, Ge X, Li Y (2018) Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew Sust Energ Rev 89:151���167. https://doi.org/10.1016/j.rser.2018.03.025 [DOI: 10.1016/j.rser.2018.03.025]
  175. Cao X, Ma L, Shiralipour A et al (2010) Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L. Environ Sci Pollut Res 17:586���594. https://doi.org/10.1007/s11356-009-0204-7 [DOI: 10.1007/s11356-009-0204-7]
  176. H��kanson L, Boulion VV (2002) Empirical and dynamical models to predict the cover, biomass and production of macrophytes in lakes. Ecol Model 151(2���3):213���243. https://doi.org/10.1016/S0304-3800(01)00458-6 [DOI: 10.1016/S0304-3800(01)00458-6]
  177. Jally B, Laubie B, Chour Z, Muhr L, Qiu R, Morel JL, Tang Y, Simonnot MO (2021) A new method for recovering rare earth elements from the hyperaccumulating fern Dicranopteris linearis from China. Miner Eng 166:106879. https://doi.org/10.1016/j.mineng.2021.106879 [DOI: 10.1016/j.mineng.2021.106879]
  178. Liu C et al (2021) Element case studies: rare earth elements. In: van der Ent A, Baker AJ, Echevarria G, Simonnot MO, Morel JL (eds) Agromining: farming for metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2_24 [DOI: 10.1007/978-3-030-58904-2_24]
  179. Duan L, Li X, Jiang Y, Lei M, Dong Z, Longhurst P (2017) Arsenic transformation behaviour during thermal decomposition of P. vittata, an arsenic hyperaccumulator. J Anal Appl Pyrolysis 124:584���591. https://doi.org/10.1016/j.jaap.2017.01.013 [DOI: 10.1016/j.jaap.2017.01.013]
  180. Chour Z, Laubie B, Morel JL, Tang Y, Qiu R, Simonnot MO, Muhr L (2018) Recovery of rare earth elements from Dicranopteris dichotoma by an enhanced ion exchange leaching process. Chem Eng Process Process Intensif 130:208���213. https://doi.org/10.1016/j.cep.2018.06.007 [DOI: 10.1016/j.cep.2018.06.007]
  181. Chour Z, Laubie B, Morel JL, Tang YT, Simonnot MO, Muhr L (2020) Basis for a new process for producing REE oxides from Dicranopteris linearis. J Environ Chem Eng 8(4):103961. https://doi.org/10.1016/j.jece.2020.103961 [DOI: 10.1016/j.jece.2020.103961]
  182. Laubie B, Chour Z, Tang YT, Morel JL, Simonnot MO, Muhr L (2018) REE recovery from the Fern D. Dichotoma by acid oxalic precipitation after direct leaching with EDTA. In: Davis B et al (eds) Extraction 2018. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_224 [DOI: 10.1007/978-3-319-95022-8_224]

MeSH Term

Biodegradation, Environmental
Wastewater
Water Pollutants, Chemical
Wetlands
Plants
Biomass

Chemicals

Wastewater
Water Pollutants, Chemical

Word Cloud

Created with Highcharts 10.0.0phytoextractionelementsrawmaterialsconstructedwetlandsbiomasseconomicallyvaluableconsideredmetalloidswastewaterrecoveryplantstillappliedplantsWastewatersoftencontainarrayincludingcriticalfertilizerproductionPlant-basedtreatmentapproachesopenpondshydroponicsystemsrepresenteco-friendlyeconomicalwayremovepotentiallytoxicConcomitantlyelement-enrichedrepresentsimportantsecondarymaterialbioenergygenerationharvestedphytominingpresentnascenttechnologyrequiresfundamentalresearchcancommerciallychapterdiscussesdifferentrolesshedslightutilizationstreamsconsidercommonlystudiedwaterpollutantsNPZnCdPbCrexpandconceptgroupratherexoticGeREEPGMhighlightingrolefaceclimatechangefiniteresourceshigh-techmetalsPhytoextractionOptionsAquaticMetalloidsMetalsPhytominingPhytoremediationWastewater

Similar Articles

Cited By