Are there interindividual differences in the reactive hypoglycaemia response to breakfast? A replicate crossover trial.

Javier T Gonzalez, Lorenzo Lolli, Rachel C Veasey, Penny L S Rumbold, James A Betts, Greg Atkinson, Emma J Stevenson
Author Information
  1. Javier T Gonzalez: Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK. J.T.Gonzalez@bath.ac.uk. ORCID
  2. Lorenzo Lolli: Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK.
  3. Rachel C Veasey: Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.
  4. Penny L S Rumbold: Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.
  5. James A Betts: Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK.
  6. Greg Atkinson: School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
  7. Emma J Stevenson: Faculty of Medical Sciences, Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.

Abstract

BACKGROUND: Following consumption of a meal, circulating glucose concentrations can rise and then fall briefly below the basal/fasting concentrations. This phenomenon is known as reactive hypoglycaemia but to date no researcher has explored potential inter-individual differences in response to meal consumption.
OBJECTIVE: We conducted a secondary analysis of existing data to examine inter-individual variability of reactive hypoglycaemia in response to breakfast consumption.
METHODS: Using a replicate crossover design, 12 healthy, physically active men (age: 18-30 y, body mass index: 22.1 to 28.0 kg⋅m) completed two identical control (continued overnight fasting) and two breakfast (444 kcal; 60% carbohydrate, 17% protein, 23% fat) conditions in randomised sequences. Blood glucose and lactate concentrations, serum insulin and non-esterified fatty acid concentrations, whole-body energy expenditure, carbohydrate and fat oxidation rates, and appetite ratings were determined before and 2 h after the interventions. Inter-individual differences were explored using Pearson's product-moment correlations between the first and second replicates of the fasting-adjusted breakfast response. Within-participant covariate-adjusted linear mixed models and a random-effects meta-analytical approach were used to quantify participant-by-condition interactions.
RESULTS: Breakfast consumption lowered 2-h blood glucose by 0.44 mmol/L (95%CI: 0.76 to 0.12 mmol/L) and serum NEFA concentrations, whilst increasing blood lactate and serum insulin concentrations (all p < 0.01). Large, positive correlations were observed between the first and second replicates of the fasting-adjusted insulin, lactate, hunger, and satisfaction responses to breakfast consumption (all r > 0.5, 90%CI ranged from 0.03 to 0.91). The participant-by-condition interaction response variability (SD) for serum insulin concentration was 11 pmol/L (95%CI: 5 to 16 pmol/L), which was consistent with the τ-statistic from the random-effects meta-analysis (11.7 pmol/L, 95%CI 7.0 to 22.2 pmol/L) whereas effects were unclear for other outcome variables (e.g., τ-statistic value for glucose: 0 mmol/L, 95%CI 0.0 to 0.5 mmol/L).
CONCLUSIONS: Despite observing reactive hypoglycaemia at the group level, we were unable to detect any meaningful inter-individual variability of the reactive hypoglycaemia response to breakfast. There was, however, evidence that 2-h insulin responses to breakfast display meaningful inter-individual variability, which may be explained by relative carbohydrate dose ingested and variation in insulin sensitivity of participants.

Keywords

References

  1. Edinburgh RM, Hengist A, Smith HA, Travers RL, Koumanov F, Betts JA, Thompson D, Walhin JP, Wallis GA, Hamilton DL et al (2018) Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. Am J Physiol - Endocrinol Metabolism 315(5):E1062–E74. https://doi.org/10.1152/ajpendo.00163.2018 [DOI: 10.1152/ajpendo.00163.2018]
  2. Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, DeFronzo RA (1989) Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Investig 84(1):205–213 [DOI: 10.1172/JCI114142]
  3. Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A, Cobelli C, Shulman GI (1996) Direct assessment of liver glycogen storage by 13 C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Investig 97(1):126–132 [DOI: 10.1172/JCI118379]
  4. Wyatt P, Berry SE, Finlayson G, O’Driscoll R, Hadjigeorgiou G, Drew DA, Khatib HA, Nguyen LH, Linenberg I, Chan AT (2021) Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat Metabolism 3(4):523–529 [DOI: 10.1038/s42255-021-00383-x]
  5. Senn S (2016) Mastering variation: variance components and personalised medicine. Stat Med 35(7):966–977. https://doi.org/10.1002/sim.6739 [DOI: 10.1002/sim.6739]
  6. Senn S (2018) Statistical pitfalls of personalized medicine. Nature 563(7733):619–621. https://doi.org/10.1038/d41586-018-07535-2 [DOI: 10.1038/d41586-018-07535-2]
  7. Senn S, Rolfe K, Julious SA (2011) Investigating variability in patient response to treatment–a case study from a replicate cross-over study. Stat Methods Med Res 20(6):657–666. https://doi.org/10.1177/0962280210379174 [DOI: 10.1177/0962280210379174]
  8. Sundstrom J, Lind L, Nowrouzi S, Hagstrom E, Held C, Lytsy P, Neal B, Marttala K, Ostlund O (2023) Heterogeneity in blood pressure response to 4 antihypertensive drugs: a Randomized Clinical Trial. JAMA 329(14):1160–1169. https://doi.org/10.1001/jama.2023.3322 [DOI: 10.1001/jama.2023.3322]
  9. Goltz FR, Thackray AE, Atkinson G, Lolli L, King JA, Dorling JL, Dowejko M, Mastana S, Stensel DJ (2019) True interindividual variability exists in postprandial appetite responses in healthy men but is not moderated by the FTO Genotype. J Nutr 149(7):1159–1169. https://doi.org/10.1093/jn/nxz062 [DOI: 10.1093/jn/nxz062]
  10. Gonzalez JT, Veasey RC, Rumbold PL, Stevenson EJ (2013) Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Brit J Nutr 110(4):721–732 [DOI: 10.1017/S0007114512005582]
  11. Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiology: Respiratory Environ Exerc Physiol 55(2):628–634 [DOI: 10.1152/jappl.1983.55.2.628]
  12. Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working G (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 106(6):881–903. https://doi.org/10.1016/j.jada.2006.02.009 [DOI: 10.1016/j.jada.2006.02.009]
  13. Parker RA, Weir CJ (2022) Multiple secondary outcome analyses: precise interpretation is important. Trials 23(1):27 [DOI: 10.1186/s13063-021-05975-2]
  14. Goltz FR, Thackray AE, King JA, Dorling JL, Atkinson G, Stensel DJ (2018) Interindividual responses of appetite to Acute Exercise: a replicated crossover study. Med Sci Sports Exerc 50(4):758–768. https://doi.org/10.1249/MSS.0000000000001504 [DOI: 10.1249/MSS.0000000000001504]
  15. Shen T, Thackray AE, King JA, Alotaibi TF, Alanazi TM, Willis SA, Roberts MJ, Lolli L, Atkinson G, Stensel DJ (2024) Are there interindividual responses of Cardiovascular Disease risk markers to Acute Exercise? A replicate crossover trial. Med Sci Sports Exerc 56(1):63–72 [PMID: 37703030]
  16. Senn S (2024) The analysis of continuous data from n-of-1 trials using paired cycles: a simple tutorial. Trials 25(1):128 [DOI: 10.1186/s13063-024-07964-7]
  17. J. C. Statistical power analysis for the behavioural sciences. 2nd ed. Hillsdale (NJ): Lawrence Erlbaum Associates, (1988)
  18. Higgins JPT, Green S Internet: http://handbook-5-1.cochrane.org
  19. Academics SOf Internet: https://www.sas.com/en_us/software/on-demand-for-academics.html
  20. West BT, Galecki AT (2011) An overview of current software procedures for fitting linear mixed models. Am Stat 65(4):274–282 [DOI: 10.1198/tas.2011.11077]
  21. Oman SD (1995) Checking the assumptions in mixed-model analysis of variance: a residual analysis approach. Comput Stat Data Anal 20(3):309–330 [DOI: 10.1016/0167-9473(94)00043-I]
  22. Schabenberger O (2004) Mixed model influence diagnostics. Proceedings of the twenty-ninth annual SAS Users Group International Conference. Cary (NC): SAS Institute, :189 – 29
  23. Schwarzer G (2007) meta: an R package for meta-analysis. R news 7:40–45
  24. Langan D, Higgins JP, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, Viechtbauer W, Simmonds M (2019) A comparison of heterogeneity variance estimators in simulated random-effects meta‐analyses. Res Synthesis Methods 10(1):83–98 [DOI: 10.1002/jrsm.1316]
  25. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, Kuss O, Higgins JP, Langan D, Salanti G (2016) Methods to estimate the between-study variance and its uncertainty in meta‐analysis. Res Synthesis Methods 7(1):55–79 [DOI: 10.1002/jrsm.1164]
  26. Viechtbauer W (2007) Confidence intervals for the amount of heterogeneity in meta-analysis. Stat Med 26(1):37–52 [DOI: 10.1002/sim.2514]
  27. Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2010) A basic introduction to fixed-effect and random‐effects models for meta‐analysis. Res Synthesis Methods 1(2):97–111 [DOI: 10.1002/jrsm.12]
  28. Borenstein M (2023) Avoiding common mistakes in meta-analysis: understanding the distinct roles of Q, I‐squared, tau‐squared, and the prediction interval in reporting heterogeneity. Research Synthesis Methods
  29. Cook JA, Julious SA, Sones W, Hampson LV, Hewitt C, Berlin JA, Ashby D, Emsley R, Fergusson DA, Walters SJ DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. bmj 2018;363.
  30. Collaboration ERF (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364(9):829–841 [DOI: 10.1056/NEJMoa1008862]
  31. Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, DeFronzo RA, Cusi K (2005) Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54(6):1640–1648 [DOI: 10.2337/diabetes.54.6.1640]
  32. Hengist A, Davies RG, Rogers PJ, Brunstrom JM, van Loon LJ, Walhin J-P, Thompson D, Koumanov F, Betts JA, Gonzalez JT Restricting sugar or carbohydrate intake does not impact physical activity level or energy intake over 24 h despite changes in substrate use: a randomised crossover study in healthy men and women. Eur J Nutr 2022:1–20
  33. Jamnick NA, Botella J, Pyne DB, Bishop DJ (2018) Manipulating graded exercise test variables affects the validity of the lactate threshold and V˙ O 2 peak. PLoS ONE 13(7):e0199794 [DOI: 10.1371/journal.pone.0199794]
  34. Flint A, Raben A, Blundell J, Astrup A (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes 24(1):38–48 [DOI: 10.1038/sj.ijo.0801083]
  35. Leonetti F, Foniciello M, Iozzo P, Riggio O, Merli M, Giovannetti P, Sbraccia P, Giaccari A, Tamburrano G (1996) Increased nonoxidative glucose metabolism in idiopathic reactive hypoglycemia. Metabolism 45(5):606–610 [DOI: 10.1016/S0026-0495(96)90031-1]
  36. Edinburgh RM, Hengist A, Smith HA, Betts JA, Thompson D, Walhin JP, Gonzalez JT (2017) Prior exercise alters the difference between arterialised and venous glycaemia: implications for blood sampling procedures. Br J Nutr 117(10):1414–1421. https://doi.org/10.1017/S0007114517001362 [DOI: 10.1017/S0007114517001362]
  37. Hengist A, Edinburgh RM, Davies RG, Walhin J-P, Buniam J, James LJ, Rogers PJ, Gonzalez JT, Betts JA (2020) Physiological responses to maximal eating in men. Brit J Nutr 124(4):407–417 [DOI: 10.1017/S0007114520001270]
  38. Jackson R, Hamling J, Sim B, Hawa M, Blix P, Nabarro J (1987) Peripheral lactate and oxygen metabolism in man: the influence of oral glucose loading. Metabolism 36(2):144–150 [DOI: 10.1016/0026-0495(87)90008-4]
  39. Moore MC, Smith MS, Farmer B, Coate KC, Kraft G, Shiota M, Williams PE, Cherrington AD (2018) Morning hyperinsulinemia primes the liver for glucose uptake and glycogen storage later in the day. Diabetes 67(7):1237–1245 [DOI: 10.2337/db17-0979]
  40. Moore MC, Smith MS, Farmer B, Kraft G, Shiota M, Williams PE, Cherrington AD (2017) Priming effect of a morning meal on hepatic glucose disposition later in the day. Diabetes 66(5):1136–1145 [DOI: 10.2337/db16-1308]
  41. Watkins J, Simpson A, Betts JA, Thompson D, Holliday A, Deighton K, Gonzalez JT (2020) Galactose ingested with a high-fat beverage increases postprandial lipemia compared with glucose but not fructose ingestion in healthy men. J Nutr 150(7):1765–1772 [DOI: 10.1093/jn/nxaa105]
  42. Jang C, Wada S, Yang S, Gosis B, Zeng X, Zhang Z, Shen Y, Lee G, Arany Z, Rabinowitz JD (2020) The small intestine shields the liver from fructose-induced steatosis. Nat Metabolism 2(7):586–593 [DOI: 10.1038/s42255-020-0222-9]
  43. Theytaz F, De Giorgi S, Hodson L, Stefanoni N, Rey V, Schneiter P, Giusti V, Tappy L (2014) Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients 6(7):2632–2649 [DOI: 10.3390/nu6072632]
  44. Enevoldsen L, Simonsen L, Macdonald I, Bülow J (2004) The combined effects of exercise and food intake on adipose tissue and splanchnic metabolism. J Physiol 561(3):871–882 [DOI: 10.1113/jphysiol.2004.076588]
  45. Senn S (2019) Sample size considerations for n-of-1 trials. Stat Methods Med Res 28(2):372–383 [DOI: 10.1177/0962280217726801]
  46. Widjaja A, Morris RJ, Levy JC, Frayn KN, Manley SE, Turner RC (1999) Within-and between-subject variation in commonly measured anthropometric and biochemical variables. Clin Chem 45(4):561–566 [DOI: 10.1093/clinchem/45.4.561]

MeSH Term

Humans
Cross-Over Studies
Male
Breakfast
Adult
Hypoglycemia
Blood Glucose
Young Adult
Adolescent
Insulin
Energy Metabolism
Lactic Acid
Fatty Acids, Nonesterified
Fasting
Postprandial Period
Appetite

Chemicals

Blood Glucose
Insulin
Lactic Acid
Fatty Acids, Nonesterified

Word Cloud

Created with Highcharts 10.0.00concentrationsresponsebreakfastinsulinconsumptionreactivehypoglycaemiainter-individualvariabilityserummmol/Lpmol/Lglucosedifferencescarbohydratelactate5mealexploredreplicatecrossover1222twofatcorrelationsfirstsecondreplicatesfasting-adjustedrandom-effectsparticipant-by-conditionBreakfast2-hblood95%CI:responses11τ-statistic795%CImeaningfulBACKGROUND:Followingcirculatingcanrisefallbrieflybasal/fastingphenomenonknowndateresearcherpotentialOBJECTIVE:conductedsecondaryanalysisexistingdataexamineMETHODS:Usingdesignhealthyphysicallyactivemenage:18-30ybodymassindex:1280 kg⋅mcompletedidenticalcontrolcontinuedovernightfasting444 kcal60%17%protein23%conditionsrandomisedsequencesBloodnon-esterifiedfattyacidwhole-bodyenergyexpenditureoxidationratesappetiteratingsdetermined2 hinterventionsInter-individualusingPearson'sproduct-momentWithin-participantcovariate-adjustedlinearmixedmodelsmeta-analyticalapproachusedquantifyinteractionsRESULTS:lowered4476NEFAwhilstincreasingp < 001Largepositiveobservedhungersatisfactionr > 090%CIranged0391interactionSDconcentration16consistentmeta-analysis2whereaseffectsunclearoutcomevariablesegvalueglucose:CONCLUSIONS:Despiteobservinggrouplevelunabledetecthoweverevidencedisplaymayexplainedrelativedoseingestedvariationsensitivityparticipantsinterindividualbreakfast?trialCarbohydrateGlucoseMetabolismResponseheterogeneity

Similar Articles

Cited By