Biosynthesis of resolvin D1, resolvin D2, and RCTR1 from 7,8(S,S)-epoxytetraene in human neutrophils and macrophages.

Robert Nshimiyimana, Mélissa Simard, Tarvi Teder, Ana R Rodriguez, Bernd W Spur, Jesper Z Haeggström, Charles N Serhan
Author Information
  1. Robert Nshimiyimana: Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115. ORCID
  2. Mélissa Simard: Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115. ORCID
  3. Tarvi Teder: Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 77, Sweden. ORCID
  4. Ana R Rodriguez: Department of Cell Biology and Neuroscience, Virtua Health College of Medicine & Life Sciences of Rowan University, Stratford, NJ 08084. ORCID
  5. Bernd W Spur: Department of Cell Biology and Neuroscience, Virtua Health College of Medicine & Life Sciences of Rowan University, Stratford, NJ 08084. ORCID
  6. Jesper Z Haeggström: Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 77, Sweden. ORCID
  7. Charles N Serhan: Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115. ORCID

Abstract

While the acute inflammatory response to harmful stimuli is protective, unrestrained neutrophil swarming drives collateral tissue damage and inflammation. Biosynthesized from omega-3 essential polyunsaturated fatty acids, resolvins are a family of signaling molecules produced by immune cells within the resolution phase to orchestrate return to homeostasis. Understanding the mechanisms that govern biosynthesis of these potent molecules gives insight into stimulating endogenous resolution and offers fresh opportunities for preventing and treating excessive inflammation. In this report, using materials prepared by total synthesis and liquid chromatography and tandem mass spectrometry-based matching studies, we established the role of 7,8(S,S)-epoxytetraene intermediate in the biosynthesis of resolvin D1, resolvin D2, and the resolvin conjugate in tissue regeneration (RCTR1) by human phagocytes. We demonstrated that this 7,8(S,S)-epoxy-containing intermediate is directly converted to resolvin D2 by human M2-like macrophages and to resolvin D1 and RCTR1 by human macrophages, neutrophils, and peripheral blood mononuclear cells. In addition, both human recombinant soluble epoxide hydrolase (sEH) and the glutathione S-transferase leukotriene C synthase (LTCS) each catalyze conversion of this epoxide to resolvin D1 and RCTR1, respectively. MS ion-trap scans and isotope incorporation of O from HO with sEH indicated that the oxygen atom at C-8 in resolvin D1 is derived from water. Results from molecular docking simulations with biosynthetic precursor 17S-hydroperoxy-4,7,10,13,19--15--docosahexaenoic acid and the epoxy intermediate were consistent with 5-lipoxygenase production of resolvin D1. Together, these results give direct evidence for the role of resolvin 7,8(S,S)-epoxytetraene intermediate in the endogenous formation of resolution-phase mediators resolvin D1, resolvin D2, and RCTR1 by human phagocytes.

Keywords

References

  1. Adv Pharmacol. 2023;97:257-281 [PMID: 37236761]
  2. Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2405821121 [PMID: 39236243]
  3. J Exp Med. 2015 Jul 27;212(8):1203-17 [PMID: 26195725]
  4. J Am Heart Assoc. 2024 Mar 5;13(5):e032588 [PMID: 38420767]
  5. FASEB J. 2019 Dec;33(12):13794-13807 [PMID: 31589826]
  6. Am J Pathol. 2018 Apr;188(4):950-966 [PMID: 29571326]
  7. Am J Hematol. 2023 Jul;98(7):1000-1016 [PMID: 37139907]
  8. Molecules. 2023 Jun 13;28(12): [PMID: 37375283]
  9. Prostaglandins Leukot Essent Fatty Acids. 2017 Oct;125:43-47 [PMID: 28987721]
  10. Nature. 2014 Jun 5;510(7503):92-101 [PMID: 24899309]
  11. Proc Natl Acad Sci U S A. 1984 Feb;81(3):689-93 [PMID: 6322165]
  12. J Clin Invest. 2021 Dec 15;131(24): [PMID: 34699386]
  13. Int J Neuropsychopharmacol. 2017 Jul 1;20(7):575-584 [PMID: 28419244]
  14. J Phys Chem Lett. 2020 Nov 5;11(21):8952-8957 [PMID: 33030905]
  15. J Pharmacol Exp Ther. 2021 Nov;379(2):156-165 [PMID: 34465632]
  16. Cancer Res. 1984 Sep;44(9):3654-60 [PMID: 6744285]
  17. Clin Chim Acta. 2023 Jul 1;547:117446 [PMID: 37329942]
  18. Annu Rev Pharmacol Toxicol. 2023 Jan 20;63:273-293 [PMID: 36100219]
  19. Front Cell Dev Biol. 2020 Dec 10;8:584206 [PMID: 33363143]
  20. Adv Prostaglandin Thromboxane Leukot Res. 1985;14:155-228 [PMID: 2992244]
  21. Annu Rev Pharmacol Toxicol. 2023 Jan 20;63:407-428 [PMID: 36130059]
  22. Nature. 2009 Oct 29;461(7268):1287-91 [PMID: 19865173]
  23. RSC Adv. 2022 Apr 19;12(19):11613-11618 [PMID: 35481084]
  24. Proc Natl Acad Sci U S A. 2021 Dec 21;118(51): [PMID: 34911767]
  25. Immunity. 2022 Apr 12;55(4):592-605 [PMID: 35417674]
  26. J Biol Chem. 2012 Mar 23;287(13):10070-10080 [PMID: 22318727]
  27. Int J Mol Sci. 2024 Feb 15;25(4): [PMID: 38396985]
  28. Int J Obes (Lond). 2024 May;48(5):725-732 [PMID: 38347128]
  29. Biochim Biophys Acta. 1988 Feb 19;958(3):469-76 [PMID: 2829972]
  30. Adv Prostaglandin Thromboxane Leukot Res. 1985;14:45-71 [PMID: 2992247]
  31. FASEB J. 2021 Apr;35(4):e21441 [PMID: 33749902]
  32. J Biol Chem. 2007 Mar 30;282(13):9323-9334 [PMID: 17244615]
  33. Br J Pharmacol. 2023 Jun;180(12):1597-1615 [PMID: 36508312]
  34. J Exp Med. 2002 Oct 21;196(8):1025-37 [PMID: 12391014]
  35. Hepatology. 2023 Apr 1;77(4):1303-1318 [PMID: 35788956]
  36. Cardiovasc Res. 2024 Mar 30;120(4):329-330 [PMID: 38387430]
  37. Neuropsychiatr Dis Treat. 2023 Jun 27;19:1463-1476 [PMID: 37396872]
  38. J Biol Chem. 2003 Apr 25;278(17):14677-87 [PMID: 12590139]
  39. Eur J Pharmacol. 2023 Nov 5;958:176047 [PMID: 37742814]
  40. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:151-7 [PMID: 6221519]

Grants

  1. R35 GM139430/NIGMS NIH HHS
  2. 5R35GM139430/HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  3. 2023-02312/Swedish Institute (SI)

MeSH Term

Humans
Docosahexaenoic Acids
Neutrophils
Macrophages
Receptors, G-Protein-Coupled

Chemicals

Docosahexaenoic Acids
resolvin D1
resolvin D2
GPR32 protein, human
Receptors, G-Protein-Coupled

Word Cloud

Created with Highcharts 10.0.0resolvinSD1human7RCTR18intermediateD2macrophagesinflammationresolution-epoxytetraenetissuemoleculescellsbiosynthesisendogenousrolephagocytesneutrophilsepoxidesEHmediatorsacuteinflammatoryresponseharmfulstimuliprotectiveunrestrainedneutrophilswarmingdrivescollateraldamageBiosynthesizedomega-3essentialpolyunsaturatedfattyacidsresolvinsfamilysignalingproducedimmunewithinphaseorchestratereturnhomeostasisUnderstandingmechanismsgovernpotentgivesinsightstimulatingoffersfreshopportunitiespreventingtreatingexcessivereportusingmaterialspreparedtotalsynthesisliquidchromatographytandemmassspectrometry-basedmatchingstudiesestablishedconjugateregenerationdemonstrated-epoxy-containingdirectlyconvertedM2-likeperipheralbloodmononuclearadditionrecombinantsolublehydrolaseglutathioneS-transferaseleukotrieneCsynthaseLTCScatalyzeconversionrespectivelyMSion-trapscansisotopeincorporationOHOindicatedoxygenatomC-8derivedwaterResultsmoleculardockingsimulationsbiosyntheticprecursor17S-hydroperoxy-4101319--15--docosahexaenoicacidepoxyconsistent5-lipoxygenaseproductionTogetherresultsgivedirectevidenceformationresolution-phaseBiosynthesisinnateimmunitylipid

Similar Articles

Cited By