Visualization of ER-to-Golgi trafficking of procollagen X.

Yuan Ximin, Hitoshi Hashimoto, Ikuo Wada, Nobuko Hosokawa
Author Information
  1. Yuan Ximin: Laboratory of Molecular and Cellular Biology, Institute for Life and Medical Sciences, Kyoto University.
  2. Hitoshi Hashimoto: Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, School of Medicine.
  3. Ikuo Wada: Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, School of Medicine.
  4. Nobuko Hosokawa: Laboratory of Molecular and Cellular Biology, Institute for Life and Medical Sciences, Kyoto University.

Abstract

Collagen is the most abundant protein in the extracellular matrix of animals, and 28 types of collagen have been reported in humans. We previously analyzed the endoplasmic reticulum (ER)-to-Golgi transport of fibril-forming type III collagen (Hirata et al., 2022) and network-forming type IV collagen (Matsui et al., 2020), both of which have long collagenous triple-helical regions. To understand the ER-to-Golgi trafficking of various types of collagens, we analyzed the transport of short-chain type X collagen in this study. We fused cysteine-free GFP to the N-telopeptide region of procollagen X (GFP-COL10A1), as employed in our previous analysis of procollagens III and IV, and analyzed its transport by live-cell imaging. Procollagen X was transported to the Golgi apparatus via vesicular and tubular carriers containing ERGIC53 and RAB1B, similar to those used for procollagen III. Carriers containing procollagen X probably used the same transport processes as those containing conventional cargoes such as ��-antitrypsin. SAR1, TANGO1, SLY1/SCFD1, and BET3/TRAPPC3 were required for trafficking of procollagen X, which are different from the factors required for trafficking of procollagens III (SAR1, TANGO1, and CUL3) and IV (SAR1 and SLY1/SCFD1). These findings reveal that accommodation of various types of collagens with different shapes into carriers may require fine-tuning of the ER-to-Golgi transport machinery.Key words: collagen, GFP-procollagen X, ER-to-Golgi trafficking, export from ER, TANGO1.

Keywords

References

  1. J Cell Biol. 2019 Mar 4;218(3):929-948 [PMID: 30587510]
  2. J Ultrastruct Res. 1984 Feb;86(2):186-91 [PMID: 6737565]
  3. Biochem J. 2000 Dec 15;352 Pt 3:907-11 [PMID: 11104702]
  4. Cold Spring Harb Perspect Biol. 2011 Jan 01;3(1):a004978 [PMID: 21421911]
  5. Matrix Biol. 1996 Sep;15(4):231-8 [PMID: 8892223]
  6. Biochemistry. 2007 Mar 27;46(12):3775-83 [PMID: 17323929]
  7. J Cell Biol. 2019 Mar 4;218(3):737-739 [PMID: 30718263]
  8. Hum Mutat. 2005 Jun;25(6):525-34 [PMID: 15880705]
  9. Dev Biol. 2017 Jan 1;421(1):8-15 [PMID: 27851892]
  10. Nature. 2012 Feb 22;482(7386):495-500 [PMID: 22358839]
  11. J Cell Biol. 2019 Nov 4;218(11):3861-3879 [PMID: 31488582]
  12. Histol Histopathol. 1997 Apr;12(2):557-66 [PMID: 9151143]
  13. Nat Commun. 2021 Nov 16;12(1):6622 [PMID: 34785650]
  14. Dev Cell. 2003 Oct;5(4):583-94 [PMID: 14536060]
  15. Ann N Y Acad Sci. 1990;580:64-73 [PMID: 2186696]
  16. J Cell Sci. 2021 Sep 1;134(17): [PMID: 34350936]
  17. J Biol Chem. 2004 May 14;279(20):21533-42 [PMID: 14976197]
  18. Matrix Biol. 2020 Nov;93:79-94 [PMID: 32562852]
  19. Cell Tissue Res. 2010 Jan;339(1):247-57 [PMID: 19693541]
  20. J Biol Chem. 2005 Apr 22;280(16):15544-52 [PMID: 15695517]
  21. Nat Struct Mol Biol. 2005 Jan;12(1):38-45 [PMID: 15608655]
  22. J Cell Biol. 2011 May 30;193(5):935-51 [PMID: 21606205]
  23. Elife. 2018 Mar 07;7: [PMID: 29513218]
  24. Science. 2012 Sep 28;337(6102):1668-72 [PMID: 23019651]
  25. FEBS Lett. 2000 Jun 30;476(1-2):32-7 [PMID: 10878245]
  26. FEBS Lett. 2023 Mar;597(6):865-882 [PMID: 36737236]
  27. J Cell Biol. 2017 Jun 5;216(6):1745-1759 [PMID: 28428367]
  28. Nat Rev Mol Cell Biol. 2014 Dec;15(12):771-85 [PMID: 25370693]
  29. Cell Rep. 2022 Jan 18;38(3):110258 [PMID: 35045300]
  30. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6036-E6044 [PMID: 27679847]
  31. Annu Rev Biochem. 2009;78:929-58 [PMID: 19344236]
  32. Mol Biol Cell. 2022 Mar 1;33(3):ar21 [PMID: 35044867]
  33. Mol Biol Cell. 2016 Sep 1;27(17):2688-96 [PMID: 27413011]
  34. J Cell Sci. 2007 Jun 15;120(Pt 12):1955-8 [PMID: 17550969]
  35. EMBO J. 2009 Jul 22;28(14):2006-17 [PMID: 19536132]
  36. J Virol. 1998 Oct;72(10):8150-7 [PMID: 9733856]
  37. Mol Biol Cell. 2005 Sep;16(9):3951-62 [PMID: 15958490]
  38. J Biol Chem. 1998 Feb 20;273(8):4547-55 [PMID: 9468510]
  39. Annu Rev Biochem. 2021 Jun 20;90:605-630 [PMID: 33503381]
  40. J Cell Sci. 2005 Apr 1;118(Pt 7):1341-53 [PMID: 15788652]
  41. Trends Cell Biol. 2019 Dec;29(12):940-953 [PMID: 31630879]
  42. Annu Rev Cell Dev Biol. 2015;31:109-24 [PMID: 26422332]
  43. Biochim Biophys Acta. 2005 Jul 10;1744(3):304-15 [PMID: 15979504]
  44. Elife. 2015 Nov 14;4: [PMID: 26568311]
  45. Ann Med. 2008;40(6):402-17 [PMID: 19160570]
  46. Nat Cell Biol. 2011 Dec 22;14(1):20-8 [PMID: 22193160]
  47. J Cell Biol. 1991 Aug;114(3):597-604 [PMID: 1860888]
  48. Cell. 2009 Mar 6;136(5):891-902 [PMID: 19269366]
  49. Traffic. 2019 Jul;20(7):491-503 [PMID: 31059169]
  50. Cell Struct Funct. 2020 Jul 23;45(2):107-119 [PMID: 32554938]
  51. Cell Biol Int. 2015 Apr;39(4):466-74 [PMID: 25581738]
  52. PLoS One. 2012;7(5):e37551 [PMID: 22649538]
  53. Trends Genet. 2004 Jan;20(1):33-43 [PMID: 14698617]
  54. Curr Opin Cell Biol. 2010 Aug;22(4):447-53 [PMID: 20439155]
  55. Mol Biol Cell. 2006 Apr;17(4):1514-26 [PMID: 16421253]
  56. Pediatr Radiol. 1988;18(2):93-102 [PMID: 3281118]
  57. Nat Rev Mol Cell Biol. 2010 Nov;11(11):759-63 [PMID: 20966969]
  58. Curr Opin Cell Biol. 2013 Aug;25(4):420-7 [PMID: 23702145]
  59. Semin Arthritis Rheum. 1991 Dec;21(3 Suppl 2):2-11 [PMID: 1796302]
  60. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12701-6 [PMID: 16908848]
  61. J Biol Chem. 1986 Apr 15;261(11):5041-50 [PMID: 3082876]
  62. J Biol Chem. 1988 Feb 15;263(5):2483-92 [PMID: 3276690]
  63. J Cell Biol. 1985 Feb;100(2):598-605 [PMID: 2578471]
  64. Front Cell Dev Biol. 2016 Mar 30;4:20 [PMID: 27066478]
  65. Nat Rev Mol Cell Biol. 2013 Jun;14(6):382-92 [PMID: 23698585]
  66. Curr Opin Cell Biol. 2010 Aug;22(4):488-95 [PMID: 20471239]
  67. Mol Biol Cell. 2018 Jul 15;29(13):1753-1762 [PMID: 29771640]
  68. Elife. 2014 May 19;3:e02784 [PMID: 24842878]
  69. Nature. 1997 Sep 4;389(6646):81-5 [PMID: 9288971]

MeSH Term

Golgi Apparatus
Endoplasmic Reticulum
Humans
Protein Transport
Procollagen
Aryl Hydrocarbon Receptor Nuclear Translocator
Animals

Chemicals

Procollagen
Aryl Hydrocarbon Receptor Nuclear Translocator

Word Cloud

Created with Highcharts 10.0.0XcollagentraffickingtransportER-to-GolgiprocollagenIIITANGO1typesanalyzedERtypeIVcontainingSAR1etalvariouscollagensprocollagenscarriersusedSLY1/SCFD1requireddifferentGFP-procollagenexportCollagenabundantproteinextracellularmatrixanimals28reportedhumanspreviouslyendoplasmicreticulum-to-Golgifibril-formingHirata2022network-formingMatsui2020longcollagenoustriple-helicalregionsunderstandshort-chainstudyfusedcysteine-freeGFPN-telopeptideregionGFP-COL10A1employedpreviousanalysislive-cellimagingProcollagentransportedGolgiapparatusviavesiculartubularERGIC53RAB1BsimilarCarriersprobablyprocessesconventionalcargoes��-antitrypsinBET3/TRAPPC3factorsCUL3findingsrevealaccommodationshapesmayrequirefine-tuningmachineryKeywords:Visualization

Similar Articles

Cited By