Interpretable discriminant analysis for functional data supported on random nonlinear domains with an application to Alzheimer's disease.

Eardi Lila, Wenbo Zhang, Swati Rane Levendovszky, Alzheimer’s Disease Neuroimaging Initiative
Author Information
  1. Eardi Lila: Department of Biostatistics, University of Washington, Seattle, USA. ORCID
  2. Wenbo Zhang: Department of Biostatistics, University of Washington, Seattle, USA.
  3. Swati Rane Levendovszky: Department of Radiology, University of Washington, Seattle, USA.

Abstract

We introduce a novel framework for the classification of functional data supported on nonlinear, and possibly random, manifold domains. The motivating application is the identification of subjects with Alzheimer's disease from their cortical surface geometry and associated cortical thickness map. The proposed model is based upon a reformulation of the classification problem as a regularized multivariate functional linear regression model. This allows us to adopt a direct approach to the estimation of the most discriminant direction while controlling for its complexity with appropriate differential regularization. Our approach does not require prior estimation of the covariance structure of the functional predictors, which is computationally prohibitive in our application setting. We provide a theoretical analysis of the out-of-sample prediction error of the proposed model and explore the finite sample performance in a simulation setting. We apply the proposed method to a pooled dataset from Alzheimer's Disease Neuroimaging Initiative and Parkinson's Progression Markers Initiative. Through this application, we identify discriminant directions that capture both cortical geometric and thickness predictive features of Alzheimer's disease that are consistent with the existing neuroscience literature.

Keywords

References

  1. Med Image Anal. 2015 May;22(1):63-76 [PMID: 25791435]
  2. J Am Stat Assoc. 2018;113(524):1601-1611 [PMID: 30799886]
  3. J Math Imaging Vis. 2006 Jan 31;24(2):209-228 [PMID: 20613972]
  4. Neuroimage. 2020 Nov 15;222:117209 [PMID: 32777356]
  5. Neuroimage Clin. 2019;22:101744 [PMID: 30852398]
  6. Neurobiol Aging. 1989 Nov-Dec;10(6):709-15 [PMID: 2628782]
  7. J Am Stat Assoc. 2017;112(519):1156-1168 [PMID: 29151658]
  8. Med Image Anal. 2017 Jan;35:570-581 [PMID: 27689896]
  9. Neuroimage. 2015 Apr 1;109:232-48 [PMID: 25613439]
  10. Stat Med. 2014 Feb 28;33(5):867-80 [PMID: 24105806]
  11. Nature. 2017 Feb 15;542(7641):348-351 [PMID: 28202961]
  12. Bioinformatics. 2018 Jan 1;34(1):97-103 [PMID: 28968671]
  13. Neuroimage. 2007 Feb 1;34(3):1149-59 [PMID: 17185000]
  14. Cereb Cortex. 2008 Sep;18(9):2181-91 [PMID: 18234686]
  15. Neuroimage. 2004;23 Suppl 1:S161-9 [PMID: 15501085]
  16. J Am Stat Assoc. 2020;115(530):501-520 [PMID: 33060871]
  17. Arch Neurol. 2011 Aug;68(8):1040-8 [PMID: 21825241]
  18. Patterns (N Y). 2020 Oct 9;1(7):100115 [PMID: 33073257]
  19. Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104 [PMID: 37127052]
  20. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  21. J Am Stat Assoc. 2017;112(519):1261-1273 [PMID: 29225385]
  22. Neuroimage. 2017 Feb 15;147:360-380 [PMID: 28033566]
  23. ACM Trans Math Softw. 2014 Feb;40(2): [PMID: 25328255]
  24. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 [PMID: 10984517]
  25. SIAM J Imaging Sci. 2016;9(3):975-1003 [PMID: 35646228]
  26. IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77 [PMID: 26539851]
  27. Biometrika. 2018 Mar;105(1):165-184 [PMID: 30686828]
  28. Acta Neuropathol. 2006 Oct;112(4):389-404 [PMID: 16906426]
  29. Neuroimage Clin. 2020;27:102338 [PMID: 32683323]
  30. Trends Cogn Sci. 2013 Dec;17(12):666-82 [PMID: 24238796]
  31. J Am Stat Assoc. 2023;118(541):3-17 [PMID: 37153845]
  32. J Multivar Anal. 2019 Jan;169:278-299 [PMID: 31105355]
  33. J Am Stat Assoc. 2020;115(532):1574-1597 [PMID: 33627920]
  34. J Comput Graph Stat. 2014 Jan 1;23(1):46-64 [PMID: 24729670]
  35. Neurology. 2016 Aug 2;87(5):539-47 [PMID: 27371494]
  36. Cereb Cortex. 2009 Mar;19(3):497-510 [PMID: 18632739]
  37. Med Image Anal. 2018 Apr;45:55-67 [PMID: 29414436]
  38. J Neurophysiol. 2011 Sep;106(3):1125-65 [PMID: 21653723]
  39. Neuroimage. 1999 Feb;9(2):195-207 [PMID: 9931269]

Grants

  1. P30 AG066518/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0functionaldataapplicationAlzheimer'sanalysisclassificationdiseasecorticalproposedmodeldiscriminantsupportednonlinearrandommanifolddomainsthicknessapproachestimationsettingInitiativeintroducenovelframeworkpossiblymotivatingidentificationsubjectssurfacegeometryassociatedmapbaseduponreformulationproblemregularizedmultivariatelinearregressionallowsusadoptdirectdirectioncontrollingcomplexityappropriatedifferentialregularizationrequirepriorcovariancestructurepredictorscomputationallyprohibitiveprovidetheoreticalout-of-samplepredictionerrorexplorefinitesampleperformancesimulationapplymethodpooleddatasetDiseaseNeuroimagingParkinson'sProgressionMarkersidentifydirectionscapturegeometricpredictivefeaturesconsistentexistingneuroscienceliteratureInterpretableneuroimagingshape

Similar Articles

Cited By