Small molecules targeting selective PCK1 and PGC-1�� lysine acetylation cause anti-diabetic action through increased lactate oxidation.

Beste Mutlu, Kfir Sharabi, Jee Hyung Sohn, Bo Yuan, Pedro Latorre-Muro, Xin Qin, Jin-Seon Yook, Hua Lin, Deyang Yu, Jo��o Paulo G Camporez, Shingo Kajimura, Gerald I Shulman, Sheng Hui, Theodore M Kamenecka, Patrick R Griffin, Pere Puigserver
Author Information
  1. Beste Mutlu: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
  2. Kfir Sharabi: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel.
  3. Jee Hyung Sohn: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
  4. Bo Yuan: Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA.
  5. Pedro Latorre-Muro: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
  6. Xin Qin: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
  7. Jin-Seon Yook: Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
  8. Hua Lin: Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA.
  9. Deyang Yu: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
  10. Jo��o Paulo G Camporez: Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA.
  11. Shingo Kajimura: Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA.
  12. Gerald I Shulman: Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA.
  13. Sheng Hui: Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA.
  14. Theodore M Kamenecka: Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA.
  15. Patrick R Griffin: Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA.
  16. Pere Puigserver: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA. Electronic address: pere_puigserver@dfci.harvard.edu.

Abstract

Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1�� acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation. SR18292 increases phosphoenolpyruvate carboxykinase 1 (PCK1) acetylation, which reverses its gluconeogenic reaction and favors oxaloacetate (OAA) synthesis from phosphoenolpyruvate. PCK1 reverse catalytic reaction induced by SR18292 supplies OAA to tricarboxylic acid (TCA) cycle and is required for increasing glucose and lactate oxidation and suppressing gluconeogenesis. Acetylation mimetic mutant PCK1 K91Q favors anaplerotic reaction and mimics the metabolic effects of SR18292 in hepatocytes. Liver-specific expression of PCK1 K91Q mutant ameliorates hyperglycemia in obese mice. Thus, SR18292 blocks gluconeogenesis by enhancing gluconeogenic substrate oxidation through PCK1 lysine acetylation, supporting the anti-diabetic effects of these small molecules.

References

  1. J Biol Chem. 2009 Oct 2;284(40):27025-9 [PMID: 19636077]
  2. Physiol Rev. 2018 Oct 1;98(4):2133-2223 [PMID: 30067154]
  3. Diabetol Metab Syndr. 2014 Aug 24;6(1):91 [PMID: 25177371]
  4. Diabetes Care. 2016 Jul;39(7):1241-9 [PMID: 26681715]
  5. Nature. 2001 Sep 13;413(6852):131-8 [PMID: 11557972]
  6. Mol Ther. 2006 Feb;13(2):401-10 [PMID: 16271515]
  7. Mol Cell. 2018 Sep 6;71(5):718-732.e9 [PMID: 30193097]
  8. Nat Commun. 2017 Oct 6;8(1):798 [PMID: 28986525]
  9. Biochemistry. 1984 Jul 31;23(16):3636-48 [PMID: 6477889]
  10. Signal Transduct Target Ther. 2020 Oct 7;5(1):227 [PMID: 33028824]
  11. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13217-22 [PMID: 25157166]
  12. Hepatology. 2008 Mar;47(3):1032-42 [PMID: 18302288]
  13. Nutr Metab (Lond). 2005 Nov 21;2:33 [PMID: 16300682]
  14. J Clin Endocrinol Metab. 2000 Nov;85(11):4053-9 [PMID: 11095432]
  15. Sci Rep. 2018 Apr 19;8(1):6289 [PMID: 29674640]
  16. Signal Transduct Target Ther. 2022 Sep 1;7(1):305 [PMID: 36050306]
  17. Nat Rev Endocrinol. 2014 Mar;10(3):143-56 [PMID: 24393785]
  18. Cancers (Basel). 2019 May 29;11(6): [PMID: 31146503]
  19. Diabetes Care. 2006 May;29(5):1130-9 [PMID: 16644654]
  20. J Hepatol. 2021 Jun;74(6):1373-1385 [PMID: 33484774]
  21. Nat Rev Drug Discov. 2016 Nov;15(11):786-804 [PMID: 27516169]
  22. Diabetes. 2008 Aug;57(8):2199-210 [PMID: 18443203]
  23. Front Endocrinol (Lausanne). 2021 Sep 08;12:735019 [PMID: 34566894]
  24. Compr Physiol. 2014 Jan;4(1):177-97 [PMID: 24692138]
  25. J Endocrinol. 2019 Nov;243(2):149-160 [PMID: 31454790]
  26. Nat Med. 2004 May;10(5):530-4 [PMID: 15107844]
  27. J Clin Invest. 1999 Feb;103(3):365-72 [PMID: 9927497]
  28. J Med Chem. 2021 Jan 28;64(2):980-990 [PMID: 33434430]
  29. J Clin Invest. 2016 Jan;126(1):12-22 [PMID: 26727229]
  30. Cells. 2023 Apr 06;12(7): [PMID: 37048171]
  31. Cell Metab. 2007 Apr;5(4):313-20 [PMID: 17403375]
  32. Biochemistry. 2015 Sep 29;54(38):5878-87 [PMID: 26322521]
  33. Mol Cell Biol. 2000 Sep;20(17):6508-17 [PMID: 10938127]
  34. Nature. 2001 Sep 13;413(6852):179-83 [PMID: 11557984]
  35. Biomed Pharmacother. 2020 Nov;131:110708 [PMID: 32927252]
  36. Biol Rev Camb Philos Soc. 2016 May;91(2):452-68 [PMID: 25740151]
  37. Cell Mol Gastroenterol Hepatol. 2019;7(2):447-456 [PMID: 30739869]
  38. ACS Med Chem Lett. 2022 Jul 21;13(8):1248-1254 [PMID: 35978682]
  39. Cell. 2017 Mar 23;169(1):148-160.e15 [PMID: 28340340]
  40. Adv Drug Deliv Rev. 2019 Jan 15;139:3-15 [PMID: 30529309]
  41. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3656-60 [PMID: 6304730]
  42. J Clin Invest. 1992 Oct;90(4):1323-7 [PMID: 1401068]
  43. Diabetes. 2009 Oct;58(10):2258-66 [PMID: 19602537]
  44. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12121-6 [PMID: 19587243]
  45. Lancet. 2023 Aug 12;402(10401):529-544 [PMID: 37385280]
  46. Proc Natl Acad Sci U S A. 1966 Jul;56(1):247-54 [PMID: 4381783]
  47. Diabetes Obes Metab. 2017 Nov;19(11):1521-1528 [PMID: 28371155]
  48. Nat Commun. 2023 Mar 14;14(1):1402 [PMID: 36918564]
  49. Arch Biochem Biophys. 1992 Jan;292(1):95-101 [PMID: 1727653]
  50. Methods Enzymol. 2014;542:391-405 [PMID: 24862277]
  51. Metabolism. 2002 Sep;51(9):1111-9 [PMID: 12200754]
  52. Biochem J. 2008 Aug 1;413(3):369-87 [PMID: 18613815]
  53. Nature. 2020 Mar;579(7798):279-283 [PMID: 32132708]
  54. Diabetes. 1987 Mar;36(3):274-83 [PMID: 2879757]
  55. J Clin Transl Endocrinol. 2018 Dec 20;15:45-53 [PMID: 30619718]
  56. Metabolism. 2016 Feb;65(2):20-9 [PMID: 26773926]

Grants

  1. U2C DK134901/NIDDK NIH HHS
  2. P30 DK045735/NIDDK NIH HHS
  3. R01 DK089883/NIDDK NIH HHS
  4. R01 DK133143/NIDDK NIH HHS
  5. K99 DK133502/NIDDK NIH HHS
  6. UL1 TR001863/NCATS NIH HHS
  7. F32 GM136019/NIGMS NIH HHS
  8. R01 DK117655/NIDDK NIH HHS
  9. R00 DK117066/NIDDK NIH HHS
  10. R01 DK081418/NIDDK NIH HHS

MeSH Term

Animals
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Acetylation
Oxidation-Reduction
Phosphoenolpyruvate Carboxykinase (GTP)
Mice
Hypoglycemic Agents
Lactic Acid
Humans
Lysine
Gluconeogenesis
Mice, Inbred C57BL
Small Molecule Libraries
Male
Intracellular Signaling Peptides and Proteins
Liver

Chemicals

Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Phosphoenolpyruvate Carboxykinase (GTP)
Hypoglycemic Agents
Lactic Acid
Lysine
Small Molecule Libraries
Ppargc1a protein, mouse
Pck1 protein, mouse
Intracellular Signaling Peptides and Proteins
PCK1 protein, human

Word Cloud

Created with Highcharts 10.0.0PCK1SR18292moleculesacetylationglucoseoxidationgluconeogenesisanti-diabeticeffectssmallgluconeogeniclactatereactionSmallselectivelyincreasingphosphoenolpyruvatefavorsOAAmutantK91Qlysineinducingperoxisomeproliferator-activatedreceptor-gammacoactivatorPGC-1��inhibitingglucagon-dependentcausingidentifiedHoweversuppressconversionmetaboliteswithoutinterferinglipogenesisunknownshowmoleculeinhibitshepaticproductionincreasescarboxykinase1reversesoxaloacetatesynthesisreversecatalyticinducedsuppliestricarboxylicacidTCAcyclerequiredsuppressingAcetylationmimeticanapleroticmimicsmetabolichepatocytesLiver-specificexpressionameliorateshyperglycemiaobesemiceThusblocksenhancingsubstratesupportingtargetingselectivePGC-1��causeactionincreased

Similar Articles

Cited By