Evidence driven indoor air quality improvement: An innovative and interdisciplinary approach to improving indoor air quality.

Mario Lovrić, Goran Gajski, Jessica Fernández-Agüera, Mira Pöhlker, Heimo Gursch, EDIAQI Consortium, Alex Borg, Jon Switters, Francesco Mureddu
Author Information
  1. Mario Lovrić: The Lisbon Council, Brussels, Belgium. ORCID
  2. Goran Gajski: Institute for Medical Research and Occupational Health, Zagreb, Croatia.
  3. Jessica Fernández-Agüera: Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Sevilla, Spain.
  4. Mira Pöhlker: Leibniz Institute for Tropospheric Research, Leipzig, Germany.
  5. Heimo Gursch: Know-Center, Graz, Austria.
  6. Alex Borg: The Lisbon Council, Brussels, Belgium.
  7. Jon Switters: The Lisbon Council, Brussels, Belgium.
  8. Francesco Mureddu: The Lisbon Council, Brussels, Belgium.

Abstract

Indoor air pollution is a recognized emerging threat, claiming millions of lives annually. People are constantly exposed to ambient and indoor air pollution. The latest research shows that people in developed countries spend up to 90% of their time indoors and almost 70% at home. Although impaired Indoor Air Quality (IAQ) represents a significant health risk, it affects people differently, and specific populations are more vulnerable: children, the elderly, and people with respiratory illnesses are more sensitive to these environmental risks. Despite rather extensive research on IAQ, most of the current understanding about the subject, which includes pollution sources, indoor-outdoor relationships, and ventilation/filtration, is still quite limited, mainly because air quality monitoring in the EU is primarily focused on ambient air quality and regulatory requirements are lacking for indoor environments. Therefore, the EDIAQI project aims to improve guidelines and awareness for advancing the IAQ in Europe and beyond by allowing user-friendly access to information about indoor air pollution exposures, sources, and related risk factors. The solution proposed with EDIAQI consists of conducting a characterization of sources and routes of exposure and dispersion of chemical, biological, and emerging indoor air pollution in multiple cities in the EU. The project will deploy cost-effective/user-friendly monitoring solutions to create new knowledge on sources, exposure routes, and indoor multipollutant body burdens. The EDIAQI project brings together 18 organizations from 11 different European countries that provide interdisciplinary skills and expertise in various fields, including environmental science and technology, medicine, and toxicology, as well as policy design and public engagement.

Keywords

References

  1. Schweizer C, Edwards RD, Bayer‐Oglesby L, Gauderman WJ, Ilacqua V, Juhani Jantunen M, et al. Indoor time–microenvironment–activity patterns in seven regions of Europe. J Expo Sci Environ Epidemiol. 2007;17:170–181.
  2. Lee KK, Bing R, Kiang J, Bashir S, Spath N, Stelzle D, et al. Adverse health effects associated with household air pollution: a systematic review, meta‐analysis, and burden estimation study. Lancet Glob Health. 2020;8:e1427–e1434.
  3. McDuffie EE, Martin RV, Spadaro JV, Burnett R, Smith SJ, O'Rourke P, et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat Commun. 2021;12:3594.
  4. Ranft U, Schikowski T, Sugiri D, Krutmann J, Krämer U. Long‐term exposure to traffic‐related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109:1004–1011.
  5. Janssen NAH, Brunekreef B, van Vliet P, Aarts F, Meliefste K, Harssema H, et al. The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environ Health Perspect. 2003;111:1512–1518.
  6. Godish T, Spengler JD. Relationships between ventilation and indoor air quality: a review. Indoor Air. 1996;6:135–145.
  7. Hussein T, Kulmala M. Indoor aerosol modeling: basic principles and practical applications. Water Air Soil Pollut Focus. 2008;8:23–34.
  8. Jung C‐C, Wu P‐C, Tseng C‐H, Su H‐J. Indoor air quality varies with ventilation types and working areas in hospitals. Build Environ. 2015;85:190–195.
  9. Halios C, Helmis C, Eleftheriadis K, Flocas H, Assimakopoulos VD. A comparative study of the main mechanisms controlling indoor air pollution in residential flats. Water Air Soil Pollut. 2009;204:333–350.
  10. Settimo G, Manigrasso M, Avino P. Indoor air quality: a focus on the European legislation and state‐of‐the‐art research in Italy. Atmos. 2020;11:370.
  11. Jalava PI, Happo MS, Huttunen K, Sillanpää M, Hillamo R, Salonen RO, et al. Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity. Environ Toxicol Pharmacol. 2015;40:375–387.
  12. Oliveira M, Slezakova K, Delerue‐Matos C, Pereira MC, Morais S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: a review on indoor and outdoor exposure levels, major sources and health impacts. Environ Int. 2019;124:180–204.
  13. Fappiano L, Caracci E, Iannone A, Murru A, Avino P, Campagna M, et al. Emission rates of particle‐bound heavy metals and polycyclic aromatic hydrocarbons in PM fractions from indoor combustion sources. Build Environ. 2024;265:112033.
  14. Di Fiore C, Pandolfi P, Carriera F, Iannone A, Settimo G, Mattei V, et al. The presence of aromatic substances in incense: determining indoor air quality and its impact on human health. Appl Sci. 2023;13:7344.
  15. Badida P, Krishnamurthy A, Jayaprakash J. Meta analysis of health effects of ambient air pollution exposure in low‐ and middle‐income countries. Environ Res. 2023;216:114604.
  16. Kumar P, Singh AB, Arora T, Singh S, Singh R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Sci Total Environ. 2023;872:162163.
  17. Vertanen‐Greis H, Löyttyniemi E, Uitti J, Putus T. Self‐reported voice disorders of teachers and indoor air quality in schools: a cross‐sectional study in Finland. Logoped Phoniatr Vocol. 2023;48:1–11.
  18. Ali MU, Yu Y, Yousaf B, Munir MAM, Ullah S, Zheng C, et al. Health impacts of indoor air pollution from household solid fuel on children and women. J Hazard Mater. 2021;416:126127.
  19. Wu J, Weng J, Xia B, Zhao Y, Song Q. The synergistic effect of PM2.5 and CO2 concentrations on occupant satisfaction and work productivity in a meeting room. Int J Environ Res Public Health. 2021;18:4109.
  20. Aslam R, Sharif F, Baqar M, Nizami A‐S. U. Ashraf Role of ambient air pollution in asthma spread among various population groups of Lahore City: a case study. Environ Sci Pollut Res. 2023;30:8682–8697.
  21. Bowatte G, Lodge CJ, Knibbs LD, Lowe AJ, Erbas B, Dennekamp M, et al. Traffic‐related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. J Allergy Clin Immunol. 2017;139:122–129.e1.
  22. Ryu MH, Murphy S, Hinkley M, Carlsten C. COPD exposed to air pollution: a path to understand and protect a susceptible population. Chest. 2023;165(4):836–846.
  23. Moreno‐Rangel A, Baek J, Roh T, Xu X, Carrillo G. Assessing impact of household intervention on indoor air quality and health of children with asthma in the US‐Mexico border: a pilot study. J Environ Public Health. 2020;2020:6042146.
  24. Slaughter JC, Lumley T, Sheppard L, Koenig JQ, Shapiro GG. Effects of ambient air pollution on symptom severity and medication use in children with asthma. Ann Allergy Asthma Immunol. 2003;91:346–353.
  25. Tiotiu AI, Novakova P, Nedeva D, Chong‐Neto HJ, Novakova S, Steiropoulos P, et al. Impact of air pollution on asthma outcomes. Int J Environ Res Public Health. 2020;17:6212.
  26. Breysse PN, Diette GB, Matsui EC, Butz AM, Hansel NN, McCormack MC. Indoor air pollution and asthma in children. Proc Am Thorac Soc. 2010;7:102–106.
  27. Wang Z, May SM, Charoenlap S, Pyle R, Ott NL, Mohammed K, et al. Effects of secondhand smoke exposure on asthma morbidity and health care utilization in children: a systematic review and meta‐analysis. Ann Allergy Asthma Immunol. 2015;115:396–401.e2.
  28. Jing W, Wang W, Liu Q. Passive smoking induces pediatric asthma by affecting the balance of Treg/Th17 cells. Pediatr Res. 2019;85:469–476.
  29. Segura‐Medina P, Vargas MH, Aguilar‐Romero JM, Arreola‐Ramírez JL, Miguel‐Reyes JL, Salas‐Hernández J. Mold burden in house dust and its relationship with asthma control. Respir Med. 2019;150:74–80.
  30. Calderón MA, Linneberg A, Kleine‐Tebbe J, de Blay F, Hernandez Fernandez de Rojas D, Virchow JC, et al. Respiratory allergy caused by house dust mites: what do we really know? J Allergy Clin Immunol. 2015;136:38–48.
  31. Custovic A, Taggart SC, Francis HC, Chapman MD, Woodcock A. Exposure to house dust mite allergens and the clinical activity of asthma. J Allergy Clin Immunol. 1996;98:64–72.
  32. Global Initiative for Asthma 2024 Available from: https://ginasthma.org/. Accessed on 15 January 2024.
  33. Gabet S, Rancière F, Just J, de Blic J, Lezmi G, Amat F, et al. Asthma and allergic rhinitis risk depends on house dust mite specific IgE levels in PARIS birth cohort children. World Allergy Organ J. 2019;12:100057.
  34. Gaffin JM, Phipatanakul W. The role of indoor allergens in the development of asthma. Curr Opin Allergy Clin Immunol. 2009;9:128–135.
  35. Nassan FL, Kelly RS, Koutrakis P, Vokonas PS, Lasky‐Su JA, Schwartz JD. Metabolomic signatures of the short‐term exposure to air pollution and temperature. Environ Res. 2021;201:111553.
  36. Nassan FL, Wang C, Kelly RS, Lasky‐Su JA, Vokonas PS, Koutrakis P, et al. Ambient PM2.5 species and ultrafine particle exposure and their differential metabolomic signatures. Environ Int. 2021;151:106447.
  37. Raaschou‐Nielsen O, Hermansen MN, Loland L, Buchvald F, Pipper CB, Sørensen M, et al. Long‐term exposure to indoor air pollution and wheezing symptoms in infants. Indoor Air. 2010;20:159–167.
  38. Raaschou‐Nielsen O, Sørensen M, Hertel O, Chawes BLK, Vissing N, Bønnelykke K, et al. Predictors of indoor fine particulate matter in infants' bedrooms in Denmark. Environ Res. 2011;111:87–93.
  39. Gupta S, Hjelmsø MH, Lehtimäki J, Li X, Mortensen MS, Russel J, et al. Environmental shaping of the bacterial and fungal community in infant bed dust and correlations with the airway microbiota. Microbiome. 2020;8:115.
  40. Lehtimäki J, Thorsen J, Rasmussen MA, Hjelmsø M, Shah S, Mortensen MS, et al. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases. J Allergy Clin Immunol. 2021;148:234–243.
  41. Vandenborght L‐E, Enaud R, Urien C, Coron N, Girodet P‐O, Ferreira S, et al. Type 2—high asthma is associated with a specific indoor mycobiome and microbiome. J Allergy Clin Immunol. 2021;147:1296–1305.e6.
  42. Marcinekova P, Melymuk L, Bohlin‐Nizzetto P, Martinelli E, Jílková SR, Martiník J, et al. Development of a supramolecular solvent‐based extraction method for application to quantitative analyses of a wide range of organic contaminants in indoor dust. Anal Bioanal Chem. 2024;416:4973–4985.
  43. Chen X, Chen X, Liu Q, Zhao Q, Xiong X, Wu C. Used disposable face masks are significant sources of microplastics to environment. Environ Pollut. 2021;285:117485.
  44. Gasperi J, Wright SL, Dris R, Collard F, Mandin C, Guerrouache M, et al. Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health. 2018;1:1–5.
  45. Kazensky L, Matković K, Gerić M, Žegura B, Pehnec G, Gajski G. Impact of indoor air pollution on DNA damage and chromosome stability: a systematic review. Arch Toxicol. 2024;98(9):2817–2841.
  46. Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, et al. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc. 2023;18:929–989.
  47. Fenech M. Cytokinesis‐block micronucleus cytome assay. Nat Protoc. 2007;2:1084–1104.
  48. Ladeira C, Møller P, Giovannelli L, Gajski G, Haveric A, Bankoglu EE, et al. The comet assay as a tool in human biomonitoring studies of environmental and occupational exposure to chemicals—a systematic scoping review. Toxics. 2024;12:270.
  49. Gajski G, Kašuba V, Milić M, Gerić M, Matković K, Delić L, et al. Exploring cytokinesis block micronucleus assay in Croatia: a journey through the past, present, and future in biomonitoring of the general population. Mutat Res Genet Toxicol Environ Mutagen. 2024;895:503749.
  50. Ferrante G, La Grutta The S. Burden of Pediatric Asthma. Front Pediatr. 2018;6:186.
  51. Gallego E, Roca FJ, Perales JF, Guardino X. Comparative study of the adsorption performance of a multi‐sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Talanta. 2010;81:916–924.
  52. Plaisance H, Leonardis T, Gerboles M. Assessment of uncertainty of benzene measurements by Radiello diffusive sampler. Atmos Environ. 2008;42:2555–2568.
  53. Jakovljević I, Pehnec G, Vadjić V, Šišović A, Davila S, Bešlić I. Carcinogenic activity of polycyclic aromatic hydrocarbons bounded on particle fraction. Environ Sci Pollut Res. 2015;22:15931–15940.
  54. Frias JPGL, Nash R. Microplastics: Finding a consensus on the definition. Mar Pollut Bull. 2019;138:145–147.
  55. Identification of microplastics using Raman spectroscopy. Latest developments and future prospects. Water Res. 2018;142:426–440.
  56. Ourgaud M, Phuong NN, Papillon L, Panagiotopoulos C, Galgani F, Schmidt N, et al. Identification and quantification of microplastics in the marine environment using the laser direct infrared (LDIR) technique. Environ Sci Technol. 2022;56:9999–10009.
  57. Altshuler B, Nelson N, Kuschner M. Estimation of Lung Tissue Dose from the Inhalation of Radon and Daughters. Health Phys. 1964;10:1137.
  58. Hofmann W, Heistracher T, Balásházy I. Deposition patterns of inhaled radon decay products in human bronchial airway bifurcations. Environ Int. 1996;22:935–940.
  59. Takahashi LC, de Oliveira T, Santos RM, Pinheiro M, Passos RG, Rocha Z. Radon dosimetry using Solid State Nuclear Track Detectors in different environments: a review. Appl Radiat Isot. 2022;186:110217.
  60. Berg G, Rybakova D, Fischer D, Cernava T, Vergès M‐CC, Charles T, et al. Microbiome definition re‐visited: old concepts and new challenges. Microbiome. 2020;8:103.
  61. Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11:5206.
  62. Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21:222–235.
  63. Fu X, Norbäck D, Yuan Q, Li Y, Zhu X, Hashim JH, et al. Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia. Environ Int. 2020;138:105664.
  64. Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier‐Verges M‐C, et al. Microbiome interconnectedness throughout environments with major consequences for healthy people and a healthy planet. Microbiol Mol Biol Rev. 2023;87:e0021222.
  65. Lehtimäki J, Gupta S, Hjelmsø M, Shah S, Thorsen J, Rasmussen MA, et al. Fungi and bacteria in the beds of rural and urban infants correlate with later risk of atopic diseases. Clin Exp Allergy. 2023;53:1268–1278.
  66. Gangneux J‐P, Sassi M, Lemire P, le Cann Metagenomic P. Characterization of indoor dust bacterial and fungal microbiota in homes of asthma and non‐asthma patients using next generation sequencing. Front Microbiol. 2020;11:1671.
  67. Shan Y, Wu W, Fan W, Haahtela T, Zhang G. House dust microbiome and human health risks. Int Microbiol. 2019;22:297–304.
  68. Chaturvedi K, Kolbe TH. Towards establishing cross‐platform interoperability for sensors in smart cities. Sensors. 2019;19:562.
  69. Paulau P, Hurka J, Middelberg J, Koch S. Centralized monitoring and control of buildings using open standards. ISPRS Ann Photogramm Remote Sens Spat Inf Sci. 2024;X‐4/W4‐2024:169–176.
  70. Tõnisson L, Preden J. Ontology‐based data representation prototype for indoor air quality, building energy performance, and health data computation. Sustainability. 2024;16:5677.
  71. Liang S, Khalafbeigi T, Schaaf H v D, Miles B, Schleidt K, Grellet S, et al. OGC SensorThings API Part 1: sensing version 1.1. 2021.
  72. CityGML 2024. Available from: https://www.ogc.org/standard/citygml/. Accessed on 12 January 2024.
  73. INSPIRE. (n.d.).
  74. Lang K, Stryeck S, Bodruzic D, Stepponat M, Trajanoski S, Winkler U, et al. CyVerse Austria—a local, collaborative cyberinfrastructure. Math Comput Appl. 2020;25:38.
  75. Jacobsen A, de Miranda Azevedo R, Juty N, Batista D, Coles S, Cornet R, et al. FAIR Principles: Interpretations and Implementation Considerations. Data Intell. 2020;2:10–29.
  76. Qin X, Hou L, Gao J, Si S. The evaluation and optimization of calibration methods for low‐cost particulate matter sensors: inter‐comparison between fixed and mobile methods. Sci Total Environ. 2020;715:136791.
  77. Lowther SD, Jones KC, Wang X, Whyatt JD, Wild O, Booker D. Particulate matter measurement indoors: a review of metrics, sensors, needs, and applications. Environ Sci Technol. 2019;53:11644–11656.
  78. Halios CH, Landeg‐Cox C, Lowther SD, Middleton A, Marczylo T, Dimitroulopoulou S. Chemicals in European residences—part I: a review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci Total Environ. 2022;839:156201.
  79. Wei W, Ramalho O, Malingre L, Sivanantham S, Little JC, Mandin C. Machine learning and statistical models for predicting indoor air quality. Indoor Air. 2019;29:704–726.
  80. Lovrić M, Pavlović K, Vuković M, Grange SK, Haberl M, Kern R. Understanding the true effects of the COVID‐19 lockdown on air pollution by means of machine learning. Environ Pollut. 2020;115:900.
  81. Šimić I, Lovrić M, Godec R, Kröll M, Bešlić I. Applying machine learning methods to better understand, model and estimate mass concentrations of traffic‐related pollutants at a typical street canyon. Environ Pollut. 2020;263:114587.
  82. Mythily M, David B, Vijay JA. In: Mishra A, el Barachi M, Kumar M, editors. Transforming industry using digital twin technology. Cham: Springer Nature Switzerland; 2024. p. 219–237.
  83. Wendt JF, Anderson JD. Computational fluid dynamics—an introduction: with contributions by John D. Anderson. Berlin, Heidelberg: Springer; 2009.
  84. Attaran M, Celik BG. Digital twin: benefits, use cases, challenges, and opportunities. Decis Anal J. 2023;6:100165.
  85. Hoffer JG, Ofner AB, Rohrhofer FM, Lovric M, Kern R, Lindstaedt S, et al. Theory‐inspired machine learning—towards a synergy between knowledge and data. Weld World. 2022;66:1291–1304.
  86. Jakovljević I, Sever Štrukil Z, Godec R, Bešlić I, Davila S, Lovrić M, et al. Pollution sources and carcinogenic risk of PAHs in PM1 particle fraction in an urban area. Int J Environ Res Public Health. 2020;17:9587.
  87. Kljaković‐Gašpić Z, Tariba Lovaković B, Smoljo I, Jurič A, Orct T, Sekovanić A, et al. Metal(loid)s, phthalate esters and polycyclic aromatic hydrocarbons in Croatian natural mineral waters: regulatory compliance and associated health risk. Environ Technol Innov. 2024;34:103570.
  88. Bonassi S, Ceppi M, Møller P, Azqueta A, Milić M, Neri M, et al. DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Sci Rep. 2021;11:16793.
  89. Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. 2007;28:625–631.
  90. Viegas S, Ladeira C, Costa‐Veiga A, Perelman J, Gajski G. Forgotten public health impacts of cancer—an overview. Arch Ind Hyg Toxicol. 2017;68:287–297.
  91. Štampar M, Breznik B, Filipič M, Žegura B. Characterization of in vitro 3D cell model developed from human hepatocellular carcinoma (HepG2) cell line. Cells. 2020;9:2557.
  92. Štampar M, Žabkar S, Filipič M, Žegura B. HepG2 spheroids as a biosensor‐like cell‐based system for (geno)toxicity assessment. Chemosphere. 2022;291:132805.
  93. Štampar M, Sedighi Frandsen H, Rogowska‐Wrzesinska A, Wrzesinski K, Filipič M, Žegura B. Hepatocellular carcinoma (HepG2/C3A) cell‐based 3D model for genotoxicity testing of chemicals. Sci Total Environ. 2021;755:143255.
  94. Agnew M, Banic I, Lake IR, Goodess C, Grossi CM, Jones NR, et al. Modifiable risk factors for common ragweed (Ambrosia artemisiifolia) allergy and disease in children: a case–control study. Int J Environ Res Public Health. 2018;15:1339.
  95. Bisgaard H, Vissing NH, Carson CG, Bischoff AL, Følsgaard NV, Kreiner‐Møller E, et al. Deep phenotyping of the unselected COPSAC2010 birth cohort study. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2013;43:1384–1394.
  96. Wei C, Ooka R. Indoor airflow field reconstruction using physics‐informed neural network. Build Environ. 2023;242(110):563.
  97. Lovrić M, Meister R, Steck T, Fadljević L, Gerdenitsch J, Schuster S, et al. Parasitic resistance as a predictor of faulty anodes in electro galvanizing: a comparison of machine learning, physical and hybrid models. Adv Model Simul Eng Sci. 2020;7.
  98. European Commission. Identifying determinants for indoor air quality and their health impact in environments for children: measures to improve indoor air quality and reduce disease burdens. Child Health Project, Fact Sheet, Horizon. 2024. Available from: https://cordis.europa.eu/project/id/101056883 Accessed on 29 June 2024.
  99. European Commission. Identification of chemical and biological determinants, their sources, and strategies to promote healthier homes in Europe, INQUIRE Project, Fact Sheet, Horizon. 2024. Available from: https://cordis.europa.eu/project/id/101057499 Accessed on 29 June 2024.
  100. European Commission. Knowledge for improving indoor AIR quality and HEALTH, K‐HEALTHinAIR Project, Fact Sheet, Horizon. 2024. Available from: https://cordis.europa.eu/project/id/101057693 Accessed on 29 June 2024.
  101. European Commission. Development of novel assessments for indoor air quality monitoring and impact on children's health, LEARN Project, Fact Sheet, Horizon. 2024. Available from: https://cordis.europa.eu/project/id/101057510 Accessed on 1 July 2024.
  102. European Commission. Disrupting noxious synergies of indoor air pollutants and their impact in childhood health and wellbeing, using advanced intelligent multisensing and green interventions, SynAir‐G Project, Fact Sheet, Horizon. 2024. Available from: https://cordis.europa.eu/project/id/101057271 Accessed on 29 June 2024.
  103. European Commission. Digital twins enabled indoor air quality management for healthy living, TwinAIR Project, Fact Sheet, Horizon. 2024. Available from: https://cordis.europa.eu/project/id/101057779 Accessed on 29 June 2024.

Grants

  1. 101057497/European Commission

MeSH Term

Humans
Air Pollutants
Air Pollution, Indoor
Environmental Exposure
Environmental Monitoring
Europe
Quality Improvement
Ventilation

Chemicals

Air Pollutants

Word Cloud

Created with Highcharts 10.0.0airindoorpollutionqualitysourcespeopleIAQEDIAQIprojectIndooremergingambientresearchcountriesriskenvironmentalmonitoringEUroutesexposureinterdisciplinarytoxicologyrecognizedthreatclaimingmillionslivesannuallyPeopleconstantlyexposedlatestshowsdevelopedspend90%timeindoorsalmost70%homeAlthoughimpairedAirQualityrepresentssignificanthealthaffectsdifferentlyspecificpopulationsvulnerable:childrenelderlyrespiratoryillnessessensitiverisksDespiteratherextensivecurrentunderstandingsubjectincludesindoor-outdoorrelationshipsventilation/filtrationstillquitelimitedmainlyprimarilyfocusedregulatoryrequirementslackingenvironmentsThereforeaimsimproveguidelinesawarenessadvancingEuropebeyondallowinguser-friendlyaccessinformationexposuresrelatedfactorssolutionproposedconsistsconductingcharacterizationdispersionchemicalbiologicalmultiplecitieswilldeploycost-effective/user-friendlysolutionscreatenewknowledgemultipollutantbodyburdensbringstogether18organizations11differentEuropeanprovideskillsexpertisevariousfieldsincludingsciencetechnologymedicinewellpolicydesignpublicengagementEvidencedrivenimprovement:innovativeapproachimprovingasthmacohortsmachinelearning

Similar Articles

Cited By