A virulence-associated small RNA MTS1338 activates an ABC transporter CydC for rifampicin efflux in .

Saumya Singh, Tanmay Dutta
Author Information
  1. Saumya Singh: RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
  2. Tanmay Dutta: RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.

Abstract

The efficacy of the tuberculosis treatment is restricted by innate drug resistance of and its ability to acquire resistance to all anti-tuberculosis drugs in clinical use. A profound understanding of bacterial ploys that decrease the effectiveness of drugs would identify new mechanisms for drug resistance, which would subsequently lead to the development of more potent TB therapies. In the current study, we identified a virulence-associated small RNA (sRNA) MTS1338-driven drug efflux mechanism in . The treatment of a frontline antitubercular drug rifampicin upregulated MTS1338 by >4-fold. Higher intrabacterial abundance of MTS1338 increased the growth rate of cells in rifampicin-treated conditions. This fact was attributed by the upregulation of an efflux protein CydC by MTS1338. Gel-shift assay identified a stable interaction of MTS1338 with the coding region of mRNA thereby potentially stabilizing it at the posttranscriptional level. The drug efflux measurement assays revealed that cells with higher MTS1338 abundance accumulate less drug in the cells. This study identified a new regulatory mechanism of drug efflux controlled by an infection-induced sRNA in .

Keywords

References

  1. Microorganisms. 2021 Feb 17;9(2): [PMID: 33671144]
  2. Antimicrob Agents Chemother. 1997 Oct;41(10):2067-75 [PMID: 9333027]
  3. Microbiology (Reading). 2016 Nov;162(11):1996-2004 [PMID: 27571709]
  4. Nat Med. 2007 Mar;13(3):290-4 [PMID: 17342142]
  5. RNA Biol. 2012 Apr;9(4):427-36 [PMID: 22546938]
  6. Nat Commun. 2020 Nov 27;11(1):6067 [PMID: 33247102]
  7. Front Microbiol. 2017 Apr 25;8:681 [PMID: 28487675]
  8. PLoS Pathog. 2011 Nov;7(11):e1002342 [PMID: 22072964]
  9. Antimicrob Agents Chemother. 2013 Apr;57(4):1857-65 [PMID: 23380727]
  10. Nat Rev Microbiol. 2010 Apr;8(4):260-71 [PMID: 20208551]
  11. Antimicrob Agents Chemother. 1999 May;43(5):1085-90 [PMID: 10223918]
  12. Trends Genet. 2021 Jan;37(1):35-45 [PMID: 32951948]
  13. PLoS One. 2017 Mar 21;12(3):e0174079 [PMID: 28323872]
  14. Tuberculosis (Edinb). 2021 Dec;131:102142 [PMID: 34773773]
  15. Mol Microbiol. 2017 Dec;106(6):919-937 [PMID: 28976035]
  16. FEMS Microbiol Rev. 2022 Feb 9;46(1): [PMID: 34637511]
  17. Front Microbiol. 2017 May 05;8:803 [PMID: 28529506]
  18. Front Cell Infect Microbiol. 2019 Nov 26;9:405 [PMID: 31850238]
  19. J Biol Chem. 2019 Dec 27;294(52):19997-20008 [PMID: 31744883]
  20. Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2215512120 [PMID: 36763530]
  21. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15629-34 [PMID: 16227431]
  22. Nucleic Acids Res. 2014 Apr;42(8):4892-905 [PMID: 24557948]
  23. PLoS Pathog. 2007 Jun;3(6):e87 [PMID: 17590082]
  24. J Clin Invest. 2008 Apr;118(4):1255-65 [PMID: 18382738]
  25. Noncoding RNA Res. 2019 May 16;4(3):86-95 [PMID: 32083232]
  26. Int J Mycobacteriol. 2018 Apr-Jun;7(2):156-161 [PMID: 29900893]
  27. Expert Rev Anti Infect Ther. 2012 Sep;10(9):983-98 [PMID: 23106274]
  28. Lancet Infect Dis. 2015 Sep;15(9):1077-1090 [PMID: 26277037]
  29. Antimicrob Agents Chemother. 2016 May 23;60(6):3455-61 [PMID: 27001809]
  30. ACS Omega. 2017 Oct 31;2(10):7400-7409 [PMID: 30023551]
  31. Nucleic Acids Res. 2017 Jul 3;45(W1):W435-W439 [PMID: 28472523]
  32. Front Cell Infect Microbiol. 2022 Sep 02;12:990312 [PMID: 36118045]
  33. J Antimicrob Chemother. 2011 Jul;66(7):1417-30 [PMID: 21558086]
  34. Nat Commun. 2024 Jan 12;15(1):488 [PMID: 38216576]
  35. Curr Top Microbiol Immunol. 2013;374:53-80 [PMID: 23179675]
  36. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12275-80 [PMID: 20566858]
  37. Int J Tuberc Lung Dis. 2009 Dec;13(12):1524-9 [PMID: 19919771]
  38. Cytometry. 1994 Dec 1;17(4):302-9 [PMID: 7875037]
  39. Front Microbiol. 2019 Feb 20;10:249 [PMID: 30842759]
  40. Nat Med. 2000 Dec;6(12):1330-3 [PMID: 11100116]
  41. Pharmaceuticals (Basel). 2012 Nov 09;5(11):1210-35 [PMID: 24281307]
  42. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28993339]
  43. Int J Mol Sci. 2023 Apr 27;24(9): [PMID: 37175635]
  44. Gene. 2018 May 20;656:60-72 [PMID: 29501814]
  45. Clin Infect Dis. 2012 Feb 15;54(4):579-81 [PMID: 22190562]
  46. Nucleic Acids Res. 2013 Dec;41(22):10062-76 [PMID: 23990327]

Word Cloud

Created with Highcharts 10.0.0drugeffluxMTS1338resistanceidentifiedsmallcellstreatmentdrugsnewstudyvirulence-associatedRNAsRNAmechanismrifampicinabundanceproteinCydCefficacytuberculosisrestrictedinnateabilityacquireanti-tuberculosisclinicaluseprofoundunderstandingbacterialploysdecreaseeffectivenessidentifymechanismssubsequentlyleaddevelopmentpotentTBtherapiescurrentMTS1338-drivenfrontlineantitubercularupregulated>4-foldHigherintrabacterialincreasedgrowthraterifampicin-treatedconditionsfactattributedupregulationGel-shiftassaystableinteractioncodingregionmRNAtherebypotentiallystabilizingposttranscriptionallevelmeasurementassaysrevealedhigheraccumulatelessregulatorycontrolledinfection-inducedactivatesABCtransporterantimicrobialgeneregulationRNAs

Similar Articles

Cited By

No available data.