Nonlinear processing with linear optics.

Mustafa Yildirim, Niyazi Ulas Dinc, Ilker Oguz, Demetri Psaltis, Christophe Moser
Author Information
  1. Mustafa Yildirim: Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ORCID
  2. Niyazi Ulas Dinc: Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ORCID
  3. Ilker Oguz: Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ORCID
  4. Demetri Psaltis: Optics Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ORCID
  5. Christophe Moser: Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ORCID

Abstract

Deep neural networks have achieved remarkable breakthroughs by leveraging multiple layers of data processing to extract hidden representations, albeit at the cost of large electronic computing power. To enhance energy efficiency and speed, the optical implementation of neural networks aims to harness the advantages of optical bandwidth and the energy efficiency of optical interconnections. In the absence of low-power optical nonlinearities, the challenge in the implementation of multilayer optical networks lies in realizing multiple optical layers without resorting to electronic components. Here we present a novel framework that uses multiple scattering, and which is capable of synthesizing programmable linear and nonlinear transformations concurrently at low optical power by leveraging the nonlinear relationship between the scattering potential, represented by data, and the scattered field. Theoretical and experimental investigations show that repeating the data by multiple scattering enables nonlinear optical computing with low-power continuous-wave light. Moreover, we empirically find that scaling of this optical framework follows a power law.

Keywords

References

  1. Science. 2018 Sep 7;361(6406):1004-1008 [PMID: 30049787]
  2. Light Sci Appl. 2021 Sep 24;10(1):196 [PMID: 34561415]
  3. Opt Lett. 2020 Oct 15;45(20):5752-5755 [PMID: 33057276]
  4. Opt Lett. 2024 Jan 15;49(2):322-325 [PMID: 38194559]
  5. Sci Rep. 2017 Aug 7;7(1):7430 [PMID: 28784997]
  6. Nature. 2020 Dec;588(7836):39-47 [PMID: 33268862]
  7. Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2305027120 [PMID: 37490539]
  8. Appl Opt. 1985 May 15;24(10):1469 [PMID: 18223740]
  9. Nature. 1990 Jan 25;343(6256):325-30 [PMID: 2300184]
  10. Phys Rev Lett. 2020 Aug 28;125(9):093901 [PMID: 32915624]
  11. Nature. 2022 Jan;601(7894):549-555 [PMID: 35082422]
  12. Sci Rep. 2018 Aug 17;8(1):12324 [PMID: 30120316]
  13. Nat Comput Sci. 2021 Aug;1(8):542-549 [PMID: 38217249]
  14. Opt Express. 2014 Jun 30;22(13):15599-607 [PMID: 24977818]
  15. Nature. 2019 May;569(7755):208-214 [PMID: 31068721]

Word Cloud

Created with Highcharts 10.0.0opticalmultiplenetworksdatapowerscatteringnonlinearneuralleveraginglayersprocessingelectroniccomputingenergyefficiencyimplementationlow-powerframeworklinearopticsDeepachievedremarkablebreakthroughsextracthiddenrepresentationsalbeitcostlargeenhancespeedaimsharnessadvantagesbandwidthinterconnectionsabsencenonlinearitieschallengemultilayerliesrealizingwithoutresortingcomponentspresentnovelusescapablesynthesizingprogrammabletransformationsconcurrentlylowrelationshippotentialrepresentedscatteredfieldTheoreticalexperimentalinvestigationsshowrepeatingenablescontinuous-wavelightMoreoverempiricallyfindscalingfollowslawNonlinearAppliedphotonics

Similar Articles

Cited By