Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA.

Alexandra Sakai, Gagandeep Singh, Mahsa Khoshbakht, Scott Bittner, Christiane V Löhr, Randy Diaz-Tapia, Prajakta Warang, Kris White, Luke Le Luo, Blanton Tolbert, Mario Blanco, Amy Chow, Mitchell Guttman, Cuiping Li, Yiming Bao, Joses Ho, Sebastian Maurer-Stroh, Arnab Chatterjee, Sumit Chanda, Adolfo García-Sastre, Michael Schotsaert, John R Teijaro, Hong M Moulton, David A Stein
Author Information
  1. Alexandra Sakai: Scripps Research Institute, La Jolla, CA 92037, USA.
  2. Gagandeep Singh: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  3. Mahsa Khoshbakht: Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
  4. Scott Bittner: Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
  5. Christiane V Löhr: Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
  6. Randy Diaz-Tapia: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  7. Prajakta Warang: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  8. Kris White: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  9. Luke Le Luo: Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
  10. Blanton Tolbert: Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
  11. Mario Blanco: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
  12. Amy Chow: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
  13. Mitchell Guttman: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
  14. Cuiping Li: National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China.
  15. Yiming Bao: National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China.
  16. Joses Ho: GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore.
  17. Sebastian Maurer-Stroh: GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore.
  18. Arnab Chatterjee: Scripps Research Institute, La Jolla, CA 92037, USA.
  19. Sumit Chanda: Scripps Research Institute, La Jolla, CA 92037, USA.
  20. Adolfo García-Sastre: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  21. Michael Schotsaert: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  22. John R Teijaro: Scripps Research Institute, La Jolla, CA 92037, USA.
  23. Hong M Moulton: Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
  24. David A Stein: Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.

Abstract

Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth and . In HeLa-ACE 2 cells, 5'END-2 produced IC values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. , using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.

Keywords

References

Cell Rep. 2024 Aug 27;43(8):114520 [PMID: 39024099]
J Control Release. 2006 Dec 1;116(3):304-13 [PMID: 17097177]
Bioconjug Chem. 2007 Jul-Aug;18(4):1325-31 [PMID: 17583927]
J Immunol Methods. 2007 Aug 31;325(1-2):114-26 [PMID: 17673254]
Antimicrob Agents Chemother. 2009 May;53(5):2089-99 [PMID: 19223614]
J Virol. 2022 Aug 24;96(16):e0075822 [PMID: 35924921]
Antimicrob Agents Chemother. 2006 Nov;50(11):3724-33 [PMID: 16966399]
EMBO Mol Med. 2021 Apr 9;13(4):e13243 [PMID: 33821570]
Virchows Arch. 2021 Jan;478(1):137-150 [PMID: 33604758]
Front Genet. 2022 Apr 06;13:791416 [PMID: 35464859]
Mol Ther. 2021 Jul 7;29(7):2219-2226 [PMID: 33992805]
J Gen Virol. 2008 Apr;89(Pt 4):939-948 [PMID: 18343835]
Lancet Respir Med. 2013 Jul;1(5):402-13 [PMID: 24429205]
J Virol. 2021 Jun 24;95(14):e0066321 [PMID: 33963053]
Genomics Proteomics Bioinformatics. 2023 Oct;21(5):1066-1079 [PMID: 37898309]
Bioconjug Chem. 2004 Mar-Apr;15(2):290-9 [PMID: 15025524]
Virus Res. 2015 Aug 3;206:99-107 [PMID: 25630058]
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2219523120 [PMID: 36893269]
RNA Biol. 2021 Apr;18(4):447-456 [PMID: 32965173]
Drug Discov Today. 2021 Oct;26(10):2367-2376 [PMID: 34023496]
Nature. 2020 Oct;586(7830):509-515 [PMID: 32967005]
J Antimicrob Chemother. 2021 Jan 19;76(2):413-417 [PMID: 33164048]
Nucleic Acids Res. 2023 Apr 11;51(6):2529-2573 [PMID: 36881759]
N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
J Virol. 2019 Oct 15;93(21): [PMID: 31391268]
Vet Microbiol. 2006 Oct 31;117(2-4):117-29 [PMID: 16839712]
Clin Microbiol Rev. 2022 Apr 20;35(2):e0018821 [PMID: 35107300]
Nat Rev Drug Discov. 2023 Jun;22(6):449-475 [PMID: 37076602]
Nature. 2023 Jan;613(7942):130-137 [PMID: 36517599]
Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
Antiviral Res. 2024 Feb;222:105815 [PMID: 38246206]
J Virol. 2005 Apr;79(8):5116-28 [PMID: 15795296]
J Mol Biol. 2012 Jan 27;415(4):680-98 [PMID: 22154809]
Nat Rev Drug Discov. 2023 Jul;22(7):585-603 [PMID: 37173515]
Nat Rev Microbiol. 2022 May;20(5):270-284 [PMID: 35354968]
RNA. 2020 Dec 2;: [PMID: 33268501]
Mol Ther. 2008 Jun;16(6):1120-8 [PMID: 18443602]
Antisense Nucleic Acid Drug Dev. 1997 Jun;7(3):151-7 [PMID: 9212905]
J Virol. 2007 Jun;81(11):5637-48 [PMID: 17344287]
Biochim Biophys Acta. 2010 Dec;1798(12):2296-303 [PMID: 20170628]
Nat Med. 2022 Sep;28(9):1944-1955 [PMID: 35982307]
Nat Microbiol. 2017 Mar 01;2:17022 [PMID: 28248290]
mSystems. 2021 Aug 31;6(4):e0064321 [PMID: 34254825]
Pharmaceutics. 2023 Feb 26;15(3): [PMID: 36986639]
ChemMedChem. 2022 Nov 18;17(22):e202200440 [PMID: 36165855]
Nature. 2022 Sep;609(7928):793-800 [PMID: 35944563]
Cell. 2020 Nov 25;183(5):1325-1339.e21 [PMID: 33080218]
Adv Drug Deliv Rev. 2008 Mar 1;60(4-5):517-29 [PMID: 18037527]
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9): [PMID: 35149555]
Virus Res. 2015 Aug 3;206:120-33 [PMID: 25736566]
Nat Commun. 2021 Jun 24;12(1):3917 [PMID: 34168138]
Pharmaceutics. 2022 Jan 22;14(2): [PMID: 35213992]
Cell Discov. 2021 Mar 23;7(1):17 [PMID: 33758165]
Science. 2022 Mar 11;375(6585):1133-1139 [PMID: 35271333]
J Gen Virol. 2005 Nov;86(Pt 11):3081-3090 [PMID: 16227231]
Mod Pathol. 2021 Aug;34(8):1456-1467 [PMID: 33795830]
Antisense Nucleic Acid Drug Dev. 2003 Feb;13(1):31-43 [PMID: 12691534]
Nucleic Acids Res. 2008 Nov;36(20):6343-54 [PMID: 18796528]
Cancer Chemother Pharmacol. 2011 Jul;68(1):193-205 [PMID: 20886212]
Antisense Nucleic Acid Drug Dev. 1997 Jun;7(3):187-95 [PMID: 9212909]
Curr Pharm Des. 2008;14(25):2619-34 [PMID: 18991679]
Allergy. 2023 Jun;78(6):1639-1653 [PMID: 36721963]
Antiviral Res. 2011 Jul;91(1):36-42 [PMID: 21554902]
Virology. 2020 Sep;548:39-48 [PMID: 32838945]
Int J Mol Sci. 2023 Oct 02;24(19): [PMID: 37834294]
J Med Chem. 2022 Feb 24;65(4):2785-2793 [PMID: 33523654]
Mol Cell. 2021 May 20;81(10):2135-2147.e5 [PMID: 33713597]
Nat Commun. 2021 Jun 3;12(1):3309 [PMID: 34083527]
J Pharm Sci. 2013 Apr;102(4):1165-72 [PMID: 23381932]
RNA. 2022 May;28(5):766-779 [PMID: 35232816]
Nucleic Acids Res. 2024 Jan 5;52(D1):D18-D32 [PMID: 38018256]
Genomics Proteomics Bioinformatics. 2023 Oct;21(5):900-903 [PMID: 37832784]
FEBS Open Bio. 2022 Sep;12(9):1584-1601 [PMID: 35429230]
Nature. 2021 Mar;591(7850):451-457 [PMID: 33561864]
Cell Rep Med. 2022 Feb 11;3(3):100549 [PMID: 35474740]
Virus Res. 2015 Aug 3;206:108-19 [PMID: 25683510]
RNA. 2022 May;28(5):729-741 [PMID: 35236777]
Science. 2021 Dec 24;374(6575):1586-1593 [PMID: 34726479]
Methods Mol Biol. 2017;1565:39-50 [PMID: 28364232]
J Virol. 2005 Aug;79(15):9665-76 [PMID: 16014928]
Nat Commun. 2022 Aug 3;13(1):4503 [PMID: 35922434]
Antimicrob Agents Chemother. 2007 Jul;51(7):2470-82 [PMID: 17485503]
Nature. 2020 Jul;583(7818):830-833 [PMID: 32380511]
Nat Rev Microbiol. 2024 Apr;22(4):206-225 [PMID: 38225365]
Nat Rev Microbiol. 2021 Mar;19(3):141-154 [PMID: 33024307]
Antivir Ther. 2009;14(7):899-909 [PMID: 19918094]
J Mol Biol. 2021 Apr 30;433(9):166885 [PMID: 33684393]
Antiviral Res. 2008 Feb;77(2):95-107 [PMID: 17959259]
Curr Protoc Nucleic Acid Chem. 2017 Mar 2;68:4.30.1-4.30.29 [PMID: 28252184]
Antisense Nucleic Acid Drug Dev. 2001 Oct;11(5):317-25 [PMID: 11763348]
Virology. 2008 Jul 5;376(2):357-70 [PMID: 18468653]
Virology. 2006 Jan 20;344(2):439-52 [PMID: 16214197]
Nat Rev Mol Cell Biol. 2022 Jan;23(1):21-39 [PMID: 34824452]
Nat Rev Drug Discov. 2023 Nov;22(11):917-934 [PMID: 37652974]
Virus Res. 2010 Jun;150(1-2):138-42 [PMID: 20206215]
J Virol. 2005 Apr;79(8):4599-609 [PMID: 15795246]
J Virol. 2007 Jan;81(1):20-9 [PMID: 16928755]
Mol Cell. 2020 Dec 17;80(6):1067-1077.e5 [PMID: 33259809]
Molecules. 2023 Jul 13;28(14): [PMID: 37513252]
Nature. 2023 Nov;623(7987):594-600 [PMID: 37748513]
Virology. 2018 Apr;517:44-55 [PMID: 29223446]
EMBO Mol Med. 2023 May 8;15(5):e17580 [PMID: 36946379]
Nat Microbiol. 2021 Oct;6(10):1319-1333 [PMID: 34556855]
Front Microbiol. 2018 Apr 20;9:750 [PMID: 29731743]
Expert Opin Biol Ther. 2023 Feb;23(2):133-143 [PMID: 36655939]
Nucleic Acids Res. 2020 Dec 16;48(22):12415-12435 [PMID: 33167030]
Lancet. 2022 Apr 16;399(10334):1513-1536 [PMID: 35279232]
Adv Drug Deliv Rev. 2011 Jan-Feb;63(1-2):69-87 [PMID: 21144875]
Front Microbiol. 2022 Oct 26;13:915202 [PMID: 36386681]
Cell Host Microbe. 2015 Dec 9;18(6):723-35 [PMID: 26651948]
Arch Virol. 2008;153(5):929-37 [PMID: 18369525]
Antiviral Res. 2012 Apr;94(1):80-8 [PMID: 22353544]
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
JCI Insight. 2023 Feb 22;8(4): [PMID: 36574296]
J Antimicrob Chemother. 2008 Sep;62(3):555-65 [PMID: 18567576]
Curr Drug Targets. 2014;15(7):663-73 [PMID: 24655142]
Curr Pharm Des. 2013;19(16):2963-9 [PMID: 23140456]
Nat Immunol. 2020 Nov;21(11):1327-1335 [PMID: 32839612]

Word Cloud

Similar Articles

Cited By